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AbstratPart 1: Known Construtions. About 40 pages of historial survey of thesubjet of hypersurfaes with many singularities onstitute the �rst part of thepresent work. We hope that this overview will not only serve as an introdutorytext and a guide to the literature, but that it will also give the reader some newideas and referenes to interesting artiles whih might serve as a starting pointfor further researh. To make this easier, we do in fat not only summarize knownresults, but we also give some diret generalizations and onrete examples whihhave not been onsidered so far.Part 2: New Construtions and Algorithms. The main part of this thesisis devoted to new onstrutions. First, we prove the existene of hypersurfaes ofany given degree d in Pn with many Aj-singularities based on the theory of dessinsd'enfants (hapter 5). This yields new asymptoti lower bounds in most ases. Ouronstrution is a variant of the well-known onstrution of Chmutov from 1992. Inthe real ase, we are able to prove an upper bound whih shows that a real variantof Chmutov's onstrutions is in some sense asymptotially the best possible one.In low degree, it is usually possible to obtain better results than those given bythe general onstrutions and upper bounds. As desribed in the historial survey,all known onstrutions use nie geometrial arguments and symmetry to reduethe problem at hand to a solvable one. In this thesis, we give several algorithmiapproahes whih do either work without suh an intuition or use experiments overprime �elds whih replae the intuition. Our method whih uses the geometry ofprime �eld experiments allows us to onstrut a septi in P3 with 99 real nodes inhapter 8 whih improves Chmutov's reord, 93.We then desribe an algoritm whih is even stronger. It redues the onstrutionof surfaes of degree d ≤ 7 with the greatest known number of nodes to a shortomputer algebra omputation. We an even apply it to higher degree: For d = 9we obtain a surfae with 226 nodes whih also improves Chmutov's urrent reord,
216. This algorithm an ertainly be applied to many other onrete problems inalgebrai geometry.Part 3: Visualization. Many interesting examples of the subjet are de�nedover the real numbers. Thus, we are quite often in a position that allows us to usevisualization of singular surfaes. For several years there already exists softwarewhih produes nie images, e.g. Endraÿ's surf. Based on these existing programswe developped some tools allowing a dynamial experiene of algebrai urves andsurfaes: Spiy, surfex, and surfex.lib. We demonstrate their usefulness in thelast part of this work. Our example is the onstrution of nie equations for all 45topologial types of real ubi surfaes in projetive three-spae whih is one of themost lassial subjets in algebrai geometry.v
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A one, a quadri surfae with the simplest type of singularity: a node, also alledordinary double point or A1-singularity. How many nodes an a surfae of degree
d in P3 have?



IntrodutionThe ProblemThe Most General Question. A generi hypersurfae of degree d ∈ N in
Pn := Pn(C) is smooth. Thus, it is natural to ask:Question 0.1. Whih ombinations of singularities an our on a hypersurfaein Pn of given degree d?It is easy to answer this question for d = 1, 2. It is obvious that a hyperplane(d = 1) annot have any singularity. It is also easy to lassify quadris (d = 2) w.r.t.the singularities ourring on them. E.g., a quadri in Pn an ontain at most oneisolated singularity. This an only be an ordinary double point.In Pn, n ≤ 3, it is also possible to treat the ases d = 3, 4: For the ubisurfaes in P3 all possible ombinations of singularities are known sine Shlä�i'swork in 1863 (see setion 1.1 on page 13). All possible ombinations of singularitieson quarti surfaes (d = 4) in P3 are also known; the last remaining open questionshave been answered in 1997 using omputers (see setion 4.8 on page 53).The Question on the Maximum Number. At the moment, the answer tothe previous question seems unreahable if d ≥ 5 or n ≥ 4. In the present work, wethus onsider the slightly simpler problem:Question 0.2. What is the maximum number µn(d) of isolated singularitieson a hypersurfae of degree d in Pn?We have already seen that this is easy if d = 1, 2: µn(1) = 0 and that µn(2) = 1for all n. On the other hand, the maximum number µ2(d) of isolated singularitieson a plane urve in P2 is (

d
2

), established by d general lines.In higher dimensions, there is no suh result known yet. In fat, a diretanalogue annot exist in Pn, n ≥ 3, beause in this ase a hypersurfae with onlyisolated singularities has to be irreduible. It is also well-known that an irreduibleplane urve of degree d with k nodes exists if and only if 0 ≤ k ≤ 1
2 (d − 1)(d − 2)(see [Sev21, p. 329℄ for a lassial exposition). However, in higher dimensions thisquestion turned out to be a hard one: Despite many e�orts, µ3(d) is only known for

d ≤ 6 until now. If we ask for the maximum number of singularities of some giventype (di�erent from nodes, e.g. usps), the question is still open in general, even inthe ase of plane urves we only know the answer for low degrees.The aim of the present work is to improve the knowledge around the questionsabove. Our fous is on the geometry and equations of the hypersurfaes and methodsfor onstruting interesting examples. Note that in prinipal, for eah d there is analgorithm whih omputes the surfaes of degree d with the maximum number ofnodes. But this involves very large systems of non-linear equations and an onlybe performed in speial ases. We work out suh an example in hapter 7. In moreompliated ases, we need other ideas. 1



2 INTRODUCTIONSome NotationSingularities. A point p ∈ Cn is alled a singular point (or singularity) of thehypersurfae f ∈ C[x1, x2, . . . , xn] if f(p) = 0 and ∂f
∂xi

(p) = 0 for all i = 1, 2, . . . , n.It is alled isolated if there exists an open neighborhood of p whih does not ontainany other singular point. This is equivalent to dim (C[x1, x2, . . . , xn]/(f, Jf)) < ∞,where Jf := ( ∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

) denotes the Jaobian ideal .Most of the time, we will only deal with a speial kind of isolated singularities,so-alled double points : Let f ∈ C[x1, x2, . . . , xn] de�ne an isolated hypersurfaesingularity (also alled f) at the origin of Cn. If the tangent one t(f) � i.e. thehomogeneous part of f of the lowest degree � has degree two then the singularityis alled a double point .An ordinary j-tuple point in Cn is an isolated singularity in Cn whih is loallya one over a smooth hypersurfae of degree j in Cn−1. An ordinary double point isalso alled (ordinary) node or A1-singularity. This is equivalent to the property thatthe hessian � i.e. the determinant of the matrix of seond order derivatives of f �does not vanish at the singular point. It is also equivalent to the property that f anbe written in the form x2
1+x2

2+· · ·+x2
n in some loal oordinates at the origin. Moregenerally, f is an Aj-singularity if it an be written in the form xj+1

1 +x2
2 + · · ·+x2

nin some loal oordinates at the origin. We all an A2-singularity an (ordinary)usp and an A3-singularity a tanode. See, e.g., [AGZV85a, AGZV85b, Dim87℄for more information on singularities.The Maximum Numbers of Singularities. The maximum number of iso-lated singularities of some given type on hypersurfaes in some projetive spaewill appear throughout this work in di�erent situations. To larify whih maximumnumber we mean, we will use di�erent notations for eah of these: Let d ∈ N, n ∈ N.Let T be a type of an isolated hypersurfae singularity in Cn (e.g., T = A1, A2, D4).Then:
• µn(d) denotes the maximum number of singularities a hypersurfae ofdegree d in Pn an have.
• µn

T (d) denotes the maximum possible number of singularities of type T ona hypersurfae of degree d in Pn whih has only singularities of type T .E.g., µ3
A1

(d) is the maximum number of nodes whih a nodal surfae in
P3 an have.

• Many results hold for hypersurfaes of degree d in Pn with only rationaldouble points as singularities. We thus introdue the notation: µn
Dp(d).

• We will need similar notations for other lasses of singularities, e.g. µn
A(d)for the maximum possible number of Aj-singularities.

• By µn
j (d) we denote the maximum number of ordinary j-tuple points ahypersurfae of degree d in Pn an have. E.g., µ5

3(d) is the maximumnumber of ordinary 5-tuple points a surfae in P3 an have.Our main objet of study are hypersurfaes in P3, so we write µ(d) := µ3(d),
µT (d) := µ3

T (d), et. for short. For a given hypersurfae f in Pn whih has onlyisolated singularities we use similar notations. E.g., µ(f) denotes the number ofsingularities and µA1
(f) the number of nodes of f .As already mentioned, these maximal numbers are only known in very few ases.Thus, upper and lower bounds for them will our frequently in the main text. Thereare some obvious inequalities for n, d ∈ N: µn(d) ≥ µn

A(d) ≥ µn
A1

(d). But notie



MAIN RESULTS 3that it is not known if µn
A1

(d) = µn(d). I.e., it is not known if the maximum numberof singularities an be ahieved with only ordinary double points.Symmetry. Most of the examples whih we will enounter are symmetri inthe following sense: If a group G ats on Pn(C) then a hypersurfae in Pn(C) whihis given by a homogeneous polynomial f ∈ C[x0, . . . , xn] is alled G-symmetri if
f is G-invariant, i.e. if f ∈ C[x0, . . . , xn]G.Notie that it is not known if the maximum number of singularities µn(d) ona hypersurfae of degree d in Pn an always be realized by an example whih is
G-symmetri, where G is not the trivial group. Nevertheless, for studying hyper-surfaes with many singularities, we will often have to restrit ourselves to hyper-surfaes whih are G-symmetri for some non-trivial �nite group G.Main ResultsMost of the results presented in this Ph.D. thesis have already appeared aspreprints on arXiv.org [Lab04, Lab05a, Lab05b, BLvS05℄, some others are al-ready published or aepted for publiation [LvS03, HL05℄. The present workplaes them in a bigger framework and gives some additional information and re-sults.The previously unpublished ontent inludes in partiular a large historialsurvey on known onstrutions and a new algorithm. This algorithm is ertainlythe most important result of this thesis: It redues all known onstrutions of nodalsurfaes of degree d ≤ 8 with the maximum known number of nodes to a omputeralgebra alulation (see part2, hapter 9), and also yields the new results µ(7) ≥ 99,
µ(9) ≥ 226.Part 1: Known Construtions. The subjet of hypersurfaes with manysingularities has a long and rih history whih started with the lassi�ation of thesingular ubi surfaes by Shlä�i in 1963. In our opinion, it is neessary to knowthese developments if one really wants to understand the ideas behind our newonstrutions whih form the main part of our work.We thus start with a historial overview of the subjet. In fat, we go slightlybeyond this and give some obvious generalizations and detailed studies in ases inwhih it seems appropriate to us. E.g., equation (2.9) whih follows from Gallarati'sgeneralization of B. Segre's ideas shows that the maximum number µA2

(6) of uspson a sexti is greater or equal to 36 whih is a fat that has been overlooked forsome time. Another example is our onrete omputation of Varhenko's spetralbound in the ase of Aj -singularities (setion 3.7). This leads to an interpretationof this bound as so-alled otahedral numbers in the ase j ≥ 2d− 1 (setion 4.13).Part 2: New Construtions and Algorithms. Our main results are on-tained in the seond part of this thesis. Therein, we present some new onstrutionsof hypersurfaes with many singularities whih lead to new lower bounds for themaximum number µn
T (d) of singularities of type T on a hypersurfae of degree din Pn in many ases. In our opinion, the methods used for these onstrutions areof independent interest themselves beause they an ertainly be applied in manyother situations.At �rst sight, our most important result is ertainly the onstrution of a surfaein P3 with 99 nodes (hapter 8) whih shows:

99 ≤ µ(7) ≤ 104.



4 INTRODUCTIONThis is the �rst onstrution of odd degree d > 5 whih exeeds the general lowerbound given by Chmutov in 1992. After Chmutov's disovery there appeared sur-faes with more nodes for d = 6, 8, 10, 12. These were found by taking a familyof surfaes whih depends on some parameters and eah of whose members wasinvariant under some large symmetry group. The symmetry redued the numberof free parameters drastially, and it was possible to determine these using othergeometrial arguments.In large odd degree the only useful symmetry one an impose seems to be di-hedral symmetry, i.e. the symmetry of the d-gon. But this kind of symmetry isessentially two-dimensional and thus leaves us with many parameters. The bestway to solve this problem seems to guess some additional geometri properties ofthe hopefully existing surfae with many singularities � but how? Our idea is touse experiments over prime �elds to get these ideas. Based on these additional geo-metrial properties, it is then not very di�ult to use omputer algebra to eliminateall free parameters.In some ases, it is even possible to solve the problem ompletely algorithmi-ally. Either by diretly working in harateristi zero and using elimination andprimary deomposition (hapter 7), or by lifting the prime �eld parameters to har-ateristi zero using the hinese remainder theorem together with a rational reoveryalgorithm (hapter 9). Indeed, we implemented the latter algorithm as a Singularlibrary alled searhInFamilies.lib. Using this, it is a triviality to reprodue theonstrutions of all known reords for µA1
(d) for d ≤ 7, even our own one for septis.When applying it to the next interesting ase whih is d = 9 we obtain a noni with

226 nodes whih shows:
226 ≤ µ(9) ≤ 246.Our algorithm is very general so that it an ertainly be applied to many other on-rete problems in algebrai geometry. In our opinion, all this makes the developmentof this algorithm the most important result of this thesis.But we do not only desribe algorithmi ways to onstrut some speial ex-amples. We also give a general onstrution of hypersurfaes in Pn with many

Aj-singularities whih does not use omputers at all (hapter 5). It is based onChmutov's well-known onstrution of nodal hypersurfaes. Our proof uses the so-alled Dessins d'Enfants. The numbers of Aj-singularities of our examples exeedthe known lower bounds in most ases. E.g. in P3, we get:
µAj

(d) '
3j + 2

6j(j + 1)
d3, j ≥ 2.In Pn, n ≥ 5, our examples even improve the lower bounds in the nodal ase slightly.We then make a short exursus to the world of real algebrai geometry (hapter6). We use a relation to the theory of real line arrangements to show that thenumbers of nodes of Breske's real variants of Chmutov's surfaes are in some senseasymptotially the largest possible ones. This on�rms a onjeture of Chmutov inthe speial ase of real line arrangements.Summarizing, we get table 0.1 on the faing page whih gives the best knownlower and upper bounds for the maximum number µAj

(d) of Aj -singularities on asurfae of degree d for j = 1, 2, 3, 4.We mark those ases in bold in whih our onstrutions improve (to our knowl-edge) the previously known lower bounds. For j ≥ 2 and d ≥ 5, all best knownlower bounds are either attained by our examples from hapter 5 or by Gallarati'sgeneralization of B. Segre's idea whih we work out in detail in setion 2.5. The



MAIN RESULTS 5
@

@j d 3 4 5 6 7 8 9 10 11 12 d

1 ��44 ��1616
��3131

��6565
��10499

��174168
��246226

��360345
��480425

��645600 ≈ ��4/95/12 · d3

2 ��33 ��88 ��2015
��3736

��6252
��9870

��144126
��202159

��275225
��363300 ≈ ��1/42/9 · d3

3 ��11 ��66 ��1310
��2615

��4431
��6964

��10272
��144114

��195140
��258198 ≈ ��8/4511/72 · d3

4 ��11 ��44 ��1110
��2015

��3521
��5432

��8054
��112100

��152110
��201132 ≈ ��5/367/60 · d3Table 0.1. An overview of our main results on the lower/upperbounds for the maximum possible number of Aj-singularities onsurfaes in P3. The bold numbers indiate the ases in whih thepresent work improves the previously best known lower bounds.onstrutions for the other surfaes reahing the best known lower bounds in thenodal ase (i.e., j = 1) are brie�y desribed in our historial survey (part 1).Part 3: Visualization. If a surfae with many singularities is de�ned overthe reals then it is sometimes nie to have a piture of it. But this is not the onlyreason why one would like to have good visualizations of singular surfaes: In thelast part of this thesis we show how to use our visualization tools Spiy and surfexto onstrut good equations for all 45 topologial types of real ubi surfaes withonly rational double points. Furthermore, in many ases visualization is a very goodtool to understand the geometry of some onstrutions in an intuitive way. Andthis an help to onstrut new intesting examples based on these known ones.All pitures of algebrai surfaes in this thesis were produed using our Singu-lar library surfex.lib. This is a Singular interfae for our tool surfex whihalso adds some features, e.g. the ability to draw one-dimensional real parts of sur-faes whih are not ontained in the real two-dimensional omponent.







Figure on the preeding pages: Barth's 345-nodal iosahedral-symmetri detifrom 1996. Like his famous 65-nodal sexti, Barth onstruted it by studying aone-parameter family of symmetri surfaes. See [Lab03a℄ for more images andmovies of algebrai surfaes.



Part 1Known Construtions





INTRODUCTION 11IntrodutionIn this historial overview, we present the work on the question on the maximumnumber of singularities on a hypersurfae of degree d in Pn := Pn(C) whih hasbeen done before the appearane of the present work. We try to mention all majorresults on the subjet. It is lear that we annot go into the details at many plaes.In view of our main results ontained in the other parts of this thesis, our fous willbe on the geometry and equations of the hypersurfaes.Some very brief survey artiles have already appeared on surfaes with manysingularities (e.g., [Tog50℄, [Gal84℄, [End95℄). Ours aims to be a bit more exhaus-tive in two senses: First, we do not only mention very few important results; seond,we do not only summarize the ideas, but we also give some natural generalizationsand onrete examples. An example is our onrete omputation of Varhenko'sspetral bound in the ase of Aj-singularities (setion 3.7). This leads to an in-terpretation of this bound as so-alled otahedral numbers in the ase j ≥ 2d − 1(setion 4.13).Another aim of this survey is to give geometers who want to onstrut newexamples of hypersurfaes with many isolated singularities a kind of enylopediaat hand whih one an use to get new ideas or to ombine and improve old ones. Atthe same time, it an serve as a guide to the literature whih tries to be as ompleteas possible. Beside this, we want to point out some of the interesting historialdevelopments by presenting this overview in (more or less) hronial order and byindiating the relations between the onstrutions as often as possible.Our summary is devided into four parts eah of whih starts with a shortintrodution. This might be partiularly helpful for an impatient reader who justwants to get a very short overview. Finally, we want to mention that the largenumber of papers on the subjet in van Straten's library and one of his unpublishednotes have proven to be quite useful as a starting point for our work.



A 16-nodal Kummer surfae. In 1864, Kummer notied that Fresnel's wave surfaehad 16 nodes and that this was indeed the maximum possible number of nodes ona quarti surfae in P3.



CHAPTER 1The Important First Steps (until 1915)After the trivial ases of degree d ≤ 2, the �rst interesting ase is the one ofsurfaes of degree three, the so-alled ubi surfaes. These were already lassi�edwith respet to the singularities ouring on them in 1863 by Shlä�i. Only oneyear later, Kummer notied that the maximum number of isolated singularities ona quarti was 16.In the following years, several interesting onstrutions and upper bounds ap-peared inluding Rohn's onstrution of surfaes of degree d with ≈ 1
4d3 nodes andBasset's upper bound µDp(d) / 1

2d3 for the maximum number of double points on asurfae of degree d. Also, the �rst nodal hypersurfaes in higher dimensions showedup, but mainly as a tool for understanding surfaes in P3 in a better way.1.1. Cubi SurfaesOne of the �rst major ahievements on algebrai surfaes was Cayley's andSalmon's observation in 1849 that a smooth ubi surfae ontains lines exatly 27lines [Cay49℄. In fat, they also notied [Sal49b℄ that there are still 27 lines whenertain singularities our if the lines are ounted with the orret multipliity. Theautomorphism group of the on�guration of the 27 lines ontains the simple groupof order 25920 as an index two normal subgroup. This on�guration and the groupplayed an important role in the development of group theory until the end of the
19th entury. See, e.g., Dikson's book [Di01, hapter XIV, p. 292-298℄.1.1.1. Shlä�i's Classi�ation. Shortly after this disovery, Shlä�i pre-sented the lassi�ation with respet to the singularities and the reality of the lines[Sh63℄ (see also [Sh58℄ and [Cay69℄). This very expliit artile also ontainsmany (projetive) equations, e.g. of the four-nodal ubi surfae(1.1) Cay3 :=

1

x0
+

1

x1
+

1

x2
+

1

x3
= 0whih is nowadays often alled Cayley Cubi (�g. 1.1 on the next page). To ourknowledge, it is not lear who �rst disovered its existene, but Cayley was ertainlyone of the �rst to know it. Any four-nodal ubi is projetively equivalent to thisone. Another nie equation of this ubi is the following (ompare also (1.5)):(1.2) Cay3 : x3

0 + x3
1 + x3

2 + x3
3 +

1

4
x3

4 = 0, x0 + x1 + x2 + x3 + x4 = 0.In hapter 12 on page 141 we give expliit a�ne equations and images for all realtopologial types of ubi surfaes.The lass d∗(f) of a surfae f of degree d is the number of tangeny points fhas with a generi penil of hyperplanes (see e.g., [BW79, setion 3℄). This numberis also the degree of the dual surfae f∗ of f . A smooth surfae of degree d haslass d(d − 1)2. In the times of Shlä�i's work mentioned above, it was well-known13



14 1. THE IMPORTANT FIRST STEPS (UNTIL 1915)
Figure 1.1. The four-nodal Cayley Cubi with the a�ne equation:
4(x3 + 3x2 − 3xy2 + 3y2 + 1

2 ) + 3(x2 + y2)(z − 6)− z(3 + 4z + 7z2).It ontains exatly three lines of multipliity one and six lines ofmultipliity four.(apparently due to Salmon [Sal47℄, [Sal49a℄, using results of Ponelet [Pon29,�93℄, see also [Sal80℄) that eah singularity of type Aj of f diminishes the lass by
j+1 ≥ 2 whih gives: d∗(f) ≤ d(d−1)2−2µA(f), where µA(f) denotes the numberof Aj-singularities of f . It was also well-known that for a surfae of degree d ≥ 3we have d∗(f) ≥ 3. This yields:(1.3) µA(d) ≤ 1

2

(
d(d − 1)2 − 3

)
.

d 1 2 3 4 5 6 7 8 9 10 11 12 d

µA(d) ≤ 0 1 4 16 38 73 124 194 286 403 548 724 ≈ 1
2d3Together with the existene of the four-nodal ubi (1.1) we get:(1.4) µ(3) = µA(3) = µA1

(3) = 4.Knowing that a usp (i.e., an A2-singularity) redues the lass by 3, the preed-ing bound an be used to show that the maximum number of usps is 3. For highersingularities this tehnique is not su�ient. E.g., it does not give any reason forthe non-existene of a ubi with an A8-singularity. In [Sh63℄, Shlä�i presents amore detailed study of the geometry of Aj-singularities to show that they only existon ubi surfaes for j ≤ 5.1.1.2. Further Results. There are several other important works on ubisurfaes whih also in�uened the theory of hypersurfaes with many singularities.E.g., Clebsh's artile [Cle71℄ whih ontains the desription of his famous DiagonalCubi Surfae in P3 with 27 real lines, see �g. 1.2 on the next page. It is given byutting a Σ5-symmetri hyperubi with a Σ5-symmetri hyperplane in P4:(1.5) Cle3 : x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0, x0 + x1 + x2 + x3 + x4 = 0.Although this surfae is smooth it will appear again in subsequent setions.Klein's artile [Kle73℄ was probably one of the �rst appliations of deformationtheory to algebrai surfaes: Starting from a ubi surfae with four nodes heonstruted the other topologial types of ubi surfaes by deformations. For areent detailed lassi�ation of real ubi surfaes with singularities, see [KM87℄.



1.2. KUMMER QUARTICS 15
Figure 1.2. The Clebsh Diagonal Cubi. We opied the equationfor this a�ne view from a Surf sript of S. Endraÿ. In (1.5) hereplaed the xi by the tetrahedral oordinates y0 = 1− x2 −

√
2x0,

y1 = 1 − x2 +
√

2x0, y2 = 1 + x2 +
√

2x1, y3 = 1 + x2 −
√

2x1.1.1.3. Models of Surfaes. The algebrai geometers of the 19th entury didnot only desribe abstrat properties of ubi surfaes. They were also interestedin the intuitive understanding of their geometry. Clebsh was probably the �rstwho suggested to onstrut a real world (plaster) model of a ubi surfae. At hissuggestion, Wiener produed suh a model of the Clebsh Diagonal Cubi in 1869.Together with some other models, it was presented at several exhibitions in theworld. Other well-known series of models were produed by Klein and Rodenberg(see [Rod04℄ and [Rod79℄). For more reent works onerning real-world models,see [Fis86, Kae99℄ and hapter 11.1.2. Kummer QuartisOnly one year after Shlä�i's lassi�ation of the ubi surfaes, Kummer stud-ied quartis with the maximum number of singularities systematially. In [Kum75a℄he remarked in 1864 that Fresnel's Wave Surfae was an algebrai surfae of degree
4 ontaining 16 nodes. This lassial surfae was disovered in 1819 during Fresnel'sstudies on rystal optis and his ideas of a wave theory of light (see [OR℄ for morebibliographial information). The equation of Fresnel's Wave Surfae presented in[Sal80℄ as an example of a quarti derived from an ellipsoid (see �g. 1.3 on thefollowing page) is:Fresa,b,c :=

(
(x2(R2 − b2)(R2 − c2)

)
+

(
y2(R2 − a2)(R2 − c2)

)

+
(
z2(R2 − a2)(R2 − b2)

)
− (R2 − a2)(R2 − b2)(R2 − c2),where R2 := x2 + y2 + z2 and the onstants a, b, c ∈ C an be hosen arbitrarily.Kummer also notied in [Kum75a℄ that 16 was the maximum possible numberof singularities on a quarti � using the reasoning (1.3) based on the upper boundfor the lass. This showed:(1.6) µ(4) = µA(4) = µA1
(4) = 16.His systemati treatment of all 16-nodal quartis in [Kum75a℄ and [Kum75b℄ isthe reason why suh surfaes are nowadays alled Kummer Surfaes. We opied a



16 1. THE IMPORTANT FIRST STEPS (UNTIL 1915)slightly adapted version of Kummer's equation given in [Kum75b℄ from a Singu-lar sript of S. Endraÿ, see �g. 1.3 for a piture:(1.7) Kuµ :=
(
x2 + y2 + z2 − µ2

)2 − λ y0 y1 y2 y3,

λ = 3µ2−1
3−µ2 , µ ∈ C,where the yi are the tetrahedral oordinates already used for Clebsh's DiagonalCubi in �g. 1.2 on the preeding page. A very nie book on the Kummer quartiwas written by Hudson [Hud90℄ a few years later. Another famous monograph onsingular quarti surfaes is [Jes16℄.

Figure 1.3. Fresnel's Wave Surfae Fres1, 3
10

, 1
2
of 1819 has 16nodes only four of whih are real. Kummer's tetrahedral-symmetriSurfae Ku1.3 of 1864, instead, has 16 real nodes.1.3. Rohn's Constrution of Quartis with 8�16 NodesIn [Roh86℄, Rohn studied quartis with 8�16 nodes in a systemati way byexamining the sexti plane urve obtained as the branh lous of the projetion ofthe quarti to a plane. The 16-nodal Kummer quarti orresponds to the ase inwhih the sextis fators into six straight lines.One of his equations of the 12-nodal quarti is still one of the most importantmethods for �nding surfaes with many singularities as we will see later. Fig. 1.4on the next page illustrates the idea for urves with A2-singularities. Rohn's ase ofa quarti with 12 nodes involved four planes and a smooth quadri instead of linesand irles, see �g. 1.5 on the faing page.I am indebted to Viat. Kharlamov who informed me of the fat that this ideais ontained in Rohn's artile (and is probably even older, ompare e.g. Shlä�i'sartile [Sh63℄). All artiles of the seond half of the 20th entury known to usattribute this onstrution to B. Segre, see setion 2.2. A reason for this might bethat in his famous book on singular quarti surfaes [Jes16℄, Jessop attributes thesystemati treatment of quartis with many nodes to Rohn, but he neither gives areferene to Rohn's artile [Roh86℄, nor explains this onstrution expliitly.For the more general ase of degree d, Rohn's onstrution (he only disussesthe speial ase d = 4) an be desribed as follows: d general hyperplanes li in P3interset in (

d
2

) lines whih meet a general surfae q of degree ⌊d
2⌋ in (

d
2

)
⌊d

2⌋ ≈ 1
4d3points. Thus, the surfaes(1.8) Rod :

d∏

i=1

li − q2 = 0



1.4. BASSET'S UPPER BOUND FOR SURFACES 17
x3 = 0, y2 = 0 x3 − y2 = 0

x2 = 0, (x + y)2 = 0, (x − y)2 = 0, (
x2 · (x + y)2 · (x − y)2

)

(x2 + y2 − 1)3 = 0 − (x2 + y2 − 1)3 = 0Figure 1.4. Globalizing the loal equation of a singularity.
E1,2,3,4 := Q := E1,2,3,4 − Q2

(x − y)(x + y)(y − z)(y + z), (x2 + y2 + z2 − 1),Figure 1.5. Rohn's 12-nodal surfae [Roh86, p. 33℄ onstrutedby globalizing the loal equation of a node.have (
d
2

)
⌊d

2⌋ =

{ 1
4d3 − 1

4d2, d even
1
4d3 − 1

2d2 + 1
4d, d odd nodes.1.4. Basset's Upper Bound for SurfaesBesides these onstrutions there also appeared new upper bounds. In 1906,Basset [Bas06a℄, [Bas06b℄ improved the bound (1.3) for the maximum numberof isolated double points on a surfae f of degree d in P3. But the approximatebehaviour did not hange: µDp(d) / 1

2d3. Basset's idea was to projet a nodalsurfae f of degree d and lass d∗ in P3 from a general point. This yields a (d− 2)-fold overing f → P2 rami�ed along a plane urve C of degree d(d − 1) and lass
d∗. Applying the Plüker Formulas to C yields:(1.9) µDp(d) ≤ 1

2

(
d(d − 1)2 − 5 −

√
d(d − 1)(3d − 14) + 25

)
.Many years later, Stagnaro remarked that Basset's artile was not rigorous enoughand gave a modern proof [Sta83℄. Furthermore, his proof yielded a generalizationof Basset's bound to ordinary q-fold points, see setion 3.1.3.



18 1. THE IMPORTANT FIRST STEPS (UNTIL 1915)The following table gives the knowledge on µDp(d) at this point. AlthoughRohn used the method desribed above only for onstruting quartis, we list thenumber of nodes on surfaes of higher degree that one obtains in this way. The boldnumbers indiate the ases in whih Basset's upper or Rohn's lower bound improvethe previously known bounds:
d 1 2 3 4 5 6 7 8 9 10 11 12 d

µDp(d) ≤ 0 1 4 16 34 66 114 181 270 383 524 696 ≈ 1
2d3

µA1
(d) ≥ 0 1 4 16 20 45 63 112 144 225 275 396 ≈ 1

4
d3We only want to mention in passing that in the years after Basset's disovery,several other people tried to improve his bound. E.g., Lefshetz [Lef13℄ and Holl-roft [Hol23℄, [Hol28℄, [Hol29℄ sueeded, but only under a ertain assumptionwhih Lefshetz alls the �postulate of singularities�. As Lefshetz mentioned, forplane urves this postulate is equivalent to the �almost obvious� admission thatwhen a urve an have κ1 usps it an also have any number of usps smallerthan κ1. Nowadays, it is known that suh properties an be shown by proving thenon-obstrutedness of a ertain deformation funtor.1.5. Some Hypersurfaes in Higher Dimensions1.5.1. C. Segre's 10-nodal Cubi in P4. Already at the end of the 19thentury, the �rst hypersurfaes in higher dimensions with many singularities wereonstruted: In 1887, C. Segre desribed a 10-nodal ubi in P4 [Seg87℄ (see also[Seg88℄, [Cas88℄) whih is the maximum possible number by an argument similarto (1.3). It an be shown that there is in fat only one suh ubi up to projetiveequivalene, see e.g. [Kal86℄. When denoting by σj(x0, x1, . . . , x5), j ∈ N, the j-thelementary symmetri polynomial in P5, C. Segre's ubi has the following nieequation:(1.10) Seg3 : σ1(x0, x1, . . . , x5) = σ3(x0, x1, . . . , x5) = 0.The 10 nodes are the elements of the Σ6-orbit of the point (1 : 1 : 1 : −1 : −1 :

−1). Another equally nie equation is (ompare Clebsh's Diagonal Cubi (1.5) insetion 1.1 on page 13 and Kalker's ubis in setion 3.11 on page 41):(1.11) Seg3 :

5∑

i=0

xi =

5∑

i=0

x3
i = 0.C. Segre also notied (see [Seg87℄ and also [Tog50, p. 53℄) that it is possible toonstrut a Kummer quarti with the help of his 10-nodal Cubi in P4 (in fat, thisseems to be his major motivation for onstruting the ubi in P4). To understandthis onstrution of the Kummer quarti, let us start with a ubi hypersurfae Hin P4 and a general point P on it. We may assume that P has the oordinates

(1 : 0 : 0 : 0 : 0) s.t. H has the form
H = F3 + 2x0F2 + x2

0F1,where the Fi ∈ C[x1, x2, x3, x4] have degree i = 1, 2, 3. The projetion of H from Pto P3 is a 2-fold rami�ed overing with branh lous(1.12) Φ4 := det

(
F1 F2

F2 F3

)
.



1.5. SOME HYPERSURFACES IN HIGHER DIMENSIONS 19In general, Φ4 has 1·2·3 = 6 singularities at the points in whih all the Fi, i = 1, 2, 3,vanish. But if H is the 10-nodal Segre ubi Seg3 then one expets to get 10additional nodes on Φ4. Indeed, in this way we get the 16-nodal Kummer quarti.1.5.2. Burkhardt's 45-nodal Quarti in P4. In 1891, Burkhardt onstruteda quarti in P4 with 45 nodes and showed this to be the maximum possible number[Bur91℄. Its beautiful geometrial and ombinatorial properties onneted to thegroup of the 27 lines of the ubi surfaes were worked out in [Bak46℄ and [Tod47℄.The fat that the Burkhardt quarti is also unique up to projetive equivalene isa muh more reent result [dJSBdV90℄. Similar to C. Segre's 10-nodal ubi, thisunique 45-nodal quarti an be given by elementary symmetri polynomials:(1.13) Bu4 : σ1(x0, x1, . . . , x5) = σ4(x0, x1, . . . , x5) = 0.Nowadays, we know that the Burkhardt quarti is unobstruted whih shows theexistene of quartis with exatly 0 up to 45 nodes. Determinantal equations forsuh quartis were given only reently [Pet98℄.1.5.3. Some Cubis with Many Singularities. The �rst ubi in P5 withthe maximum number of ordinary double points was Veneroni's 15-nodal hypersur-fae [Ven14℄. The desription of the spae of all suh hyperubis was the mainsubjet of Kalker's Ph.D. thesis 70 years later [Kal86℄.Lefshetz onsidered higher-dimensional hypersurfaes with many higher singu-larities. E.g., he onstruted a ubi hypersurfae in P4 with 5 usps whih is themaximum possible number, see [Lef12℄.



Barth's D5-symmetri Togliatti quinti from 1993. Togliatti already showed theexistene of 31-nodal quintis in 1940, but he did not give onrete equations.



CHAPTER 2The Problem is Di�ult (1915�1959)After the �rst fruitful years the development of the area of hypersurfaes withmany singularities slowed down a bit. In fat, the �rst striking result after Basset'supper bound of 1906 was the onstrution of Togliatti's 31-nodal quinti surfae in1940 (setion 2.1). It seems that it was only after this disovery that the geometersrealized the di�ulty and relevane of the problem (see e.g., [Tog50℄).In the following years, several papers appeared on the subjet. The major re-sults in this diretion were probably B. Segre's ounterexamples to Severi's laimedupper bound (setion 2.2), and B. Segre's observation that pull-bak under a branhedovering is a good way to produe many singularities (setion 2.4).2.1. Togliatti's Cubis in P5 and Quinti in P3More than 20 years after Veneroni, Togliatti also onstruted 15-nodal ubisin P5 [Tog36℄ ([Tog37℄ ontains a simpli�ed version) and he also proved that thiswas the maximum possible number of nodes on suh a hypersurfae. As Togliattiremarked on the last page of [Tog37℄, his family ontains Veneroni's as a speialase. His three-parameter family of 15-nodal ubis is:(2.1) Tog3 : x3x4x5 + x3A + x4B + x5C = 0,where A, B, C ∈ C[x0, x1, x2] are de�ned as follows:
A := −x2

0 + lx2
1 +

1

k
x2

2, B :=
1

l
x2

0 − x2
1 + hx2

2, C := kx2
0 +

1

h
x2

1 − x2
2,and where the three parameters 0 6= h, k, l ∈ C satisfy the ondition hkl + 1 6= 0. Apartiularly nie equation of a 15-nodal ubi in P5 arises for h = k = l = 1.Togliatti's ubis are muh better known than Veneroni's beause Togliatti usedthem to show the existene of a 31-nodal quinti surfae Tog31 in P3 [Tog40℄ whihwas the �rst new lower bound for the maximum number µ(d) of singularities on asurfae of degree d in P3 sine 50 years:(2.2) µA1

(5) ≥ 31.Togliatti's onstrution is a variant of C. Segre's onstrution of the Kummerquarti (1.12). Togliatti started with a smooth hyperubi H in P5. As there arefour onditions on a line to be ontained in suh a ubi and as the Grassmanianof lines has dimension 8, we get a four-dimensional family of lines on a generihyperubi H . Assuming that the line l is given by x2 = x3 = x4 = x5 = 0, theubi an be written in the from
H = A + 2x1B + 2x1C + x2

0D + 2x0x1E + x2
1F,where A, B, C, D, E, F ∈ C[x2, . . . , x5]. When interseting H ⊂ P4 with the P3 of

P2's ontaining l we get a ubi onsisting of the line l and a residual oni whih21



22 2. THE PROBLEM IS DIFFICULT (1915�1959)will be a pair of lines if(2.3) Φ5 := det




A B C
B D E
C E F


 = 0.

Φ5 is a quinti surfae in P3 with oordinates x2, . . . , x5. This surfae has 16singular points orresponding to the points in whih all the 2 × 2 minors of thematrix vanish. Now, if the hyperubi C in P5 has some nodes one expets thequinti surfae Φ to have the same number of extra nodes. Using a 15-nodal ubiwe get the desired 16+15 = 31 nodes on Φ5 whih we denote by Tog31 in that ase.Nowadays, all 31-nodal quintis in P3 all alled Togliatti quintis beause Beauvilleshowed in [Bea79b℄ using a result of Catanese [Cat81℄ that all 31-nodal quintisin P3 an atually be obtained with Togliatti's onstrution.Other more expliit onstrutions of 31-nodal quintis were given later: In 1983,Stagnaro onstruted a 31-nodal quinti in P3, and a real dihedral-symmetri suhquinti was found by Barth in the 90's. The latter was desribed in Endraÿ's Ph.D.thesis [End96℄ (see also setion 4.2 on page 47).2.2. Severi's Wrong Assumption and B. Segre's First ConstrutionIn 1946, Severi wrote an artile [Sev46℄ on an upper bound of (
d+2
3

)
− 4 ≈ 1

6d3singularities whih was shown to be wrong by B. Segre only shortly afterwards[Seg47℄.In fat, Severi onsidered the following property as being intuitively lear: µordinary double points diminish the number of moduli of the surfae at least by µ.As Lefshetz already notied (see end of setion 1.4), we have to be very arefulwith suh arguments. Burns and Wahl [BW74℄ analyzed this problem in 1974:They showed that the minimal resolution X → f of a µ-nodal surfae f of degree
d is unobstruted if and only if the set of nodes Σ is d-independent, i.e. for anypartition Σ = Σ′ ∪ Σ′′, one may �nd a hypersurfae of degree d ontaining Σ′ andmissing Σ′′. To obtain an example of a surfae of the lowest possible degree withobstruted minimal resolution, they onsidered the variants(2.4) BWd :=

d∏

i=1

li(x0, x1, x2) − xd
3 = 0of Rohn's onstrution (1.8) with (

d
2

) singularities of type Ad−1 (the li are generallinear forms in x0, x1, x2). Indeed, for d = 5 this is a quinti with ten A4-singularitieswhih is an example of an obstruted minimal resolution of a surfae of the lowestdegree.Burns and Wahl [BW74℄ also mentioned that B. Segre's ounterexamples[Seg47℄ to Severi's laim lead to unobstruted minimal resolutions. These anbe onstruted as follows. Consider the form
Φ := det




f11 · · · f1r... . . . ...
fr1 · · · frr


 ,where fij = fji are forms of degree k in four variables. Suh a surfae Φ of degree

r·k in P3 has in general nodes at the δ :=
(
r+1
3

)
·k3 points in whih the (r−1)×(r−1)minors of the matrix vanish.



2.4. B. SEGRE'S SECOND CONSTRUCTION 23In setion 9 of his artile, B. Segre speialized the fij and got surfaes of degree
r·k with exatly δ1 := δ + r

2k2(k− 1) = rk
6 (r2k2 +2k2− 3k) nodes. For r = 2, theseare surfaes of even degree d = 2k with exatly 1

4d3 − 1
4d2 nodes whih disprovedSeveri's laim.As already mentioned in setion 1.3 on page 16, Viat. Kharlamov informed meof the fat that for r = 2, these surfaes had already been found by Rohn [Roh86℄60 years earlier in the ase of quartis.Togliatti [Tog50℄ gave an overview of the results on hypersurfaes with manysingularities known until 1950 and pointed out the di�ulty of the subjet. Hissurvey artile turned out to have some in�uene on the development of the subjet:In fat, several authors ited this artile as a motivation for working in this �eld inthe following years.2.3. Gallarati's General ConstrutionsIn [Gal51b℄, Gallarati remarked that the speial ase of r = 2 of B. Segre'sonstrution also worked for odd degree in order to show that Severi's laim failsfor all d ≥ 12. Again, this was basially a redisovery of Rohn's onstrution fromsetion 1.3 on page 16.Gallarati [Gal51a℄ also gave another onstrution of nodal surfaes of degree din P3 with approximately≈ 1

4d3 nodes. His onstrution improved the old bound 1.8on page 16 in the lower order terms:(2.5) µA1
(d) ≥

{ 1
4d3+1

4
d2 − d, d even

1
4d3−1

4
d2 − 1

4d + 1, d odd.It is interesting to note that he also gave a onstrution of surfaes of odd degree
d with exatly one triple point and many additional nodes whose number of nodes
δ(d) exeeded the previously mentioned ones:(2.6) δ(d) =

1

4
d3+

1

4
d2 − 9

4
d − 9

4
.The following table lists the bounds known up to this point. Again, the bold num-bers indiiate the ases in whih Gallarati's onstrution improved the previouslyknown bounds. In the ases in whih µA1

(d) di�ers from µ(d), we give both num-bers:
d 5 6 7 8 9 10 11 12 d

µDp(d) ≤ 34 66 114 181 270 383 524 696 ≈ 1
2d3

µA1
(d) (µ(d)) ≥ 31 57 72(81) 136 160(181) 265 300(337) 456 ≈ 1

4d32.4. B. Segre's Seond ConstrutionIn [Seg52℄, B. Segre introdued another nie onstrution of surfaes with manysingularities using pull-bak under a branhed overing. He onsidered the map
Ω : P3 → P3, (x0 : x1 : x2 : x3) 7→ (x2

0 : x2
1 : x2

2 : x2
3).This map has degree eight and the pull-bak of a form f(x0, x1, x2, x3) of degree

d under this map is a form f(x2
0, x

2
1, x

2
2, x

2
3) of degree 2d. A node of f outsidethe oordinate tetrahedron orresponds to eight nodes of the transformed surfae.Taking f to be tangent to the tetrahedron, one gets additional nodes. In this way,B. Segre onstruted surfaes of degree 4, 6, 8 with 16, 63, 153 nodes, respetively.



24 2. THE PROBLEM IS DIFFICULT (1915�1959)E.g., for the Kummer quarti he took a tetrahedron eah of whose four planes touha smooth quadri in generi points.B. Segre explained that his onstrution an also be applied to any nodal surfae
F0 of degree d0 with k0 nodes. The resulting surfae has degree 2d0 and 8k0 + 4nodes. Applied suessively to his 153-nodal oti and so on, this yields surfaes Fiof degree d = 2i · 8 with(2.7) µA1

(d) >
153

83
d3nodes. This was the �rst time that an asymptoti lower bound of more than 1

4d3singularities on a surfae of degree d appeared. We get the following table (Basset'supper bound was still the best one whih was valid without additional assumptions):
d 5 6 7 8 9 10 11 12 d

µDp(d) ≤ 34 66 114 181 270 383 524 696 ≈ 1
2d3

µA1
(d) (µ(d)) ≥ 31 63 80(81) 153 180(181) 265 336(337) 508 ≈ 153

512
d3In his paper, B. Segre also remarked that it might be possible to adapt hisonstrution of the 153-nodal oti to get a 160-nodal one. This would improve thislower bound to ≈ 160

83 d3 = 5
16d3.In the same paper, B. Segre also tried to improve the upper bounds for a surfae

f with only isolated double points. He did not sueed in general, but under theassumption that f does not possess an in�nite number of tritangent planes (i.e.planes whih are tangent to the surfae in three points) and that its paraboli urve(the intersetion of the surfae with its hessian) and its �enodal urve (the pointsat whih there is a line having at least 4-point ontat with the surfae) do notontain any ommon omponent. E.g., he showed that � under these assumptions� a quinti annot have more than 31 singularities and a sexti annot have morethan 63 ones. Of ourse, this did not prove that there were no surfaes with morenodes, but it gave an idea where to searh for suh examples.2.5. Gallarati's Generalization of B. Segre's Seond ConstrutionShortly after B. Segre's disovery, Gallarati [Gal52a℄ generalized the map Ω tohigher dimensions and higher singularities:(2.8) Ωn
j : Pn → Pn, (x0 : x1 : · · · : xn) 7→ (xj

0 : xj
1 : · · · : xj

n).As an example analogous to B. Segre's onstrution of the Kummer quarti, Gal-larati took a smooth quadri in Pn touhing the n + 1 hyperplanes of the oordi-nate (n + 1)-hedron in generi points. Via Ωn
2 this gives a hyperquarti in Pn with

(n + 1) · 2n−1 nodes. E.g., Gallarati obtained a 40-nodal hyperquarti V40 in P4.2.5.1. A Formula. Gallarati did not give a general formula for the numberand type of singularities one obtains in this way. But it is easy to derive a formulafor hypersurfaes with Aj-singularities similar to B. Segre's ase of nodal surfaesin P3: Let F0 be a hypersurfae in Pn of degree d0 with k0 singularities of type
Aj . Take n+1 general hyperplanes tangent to F0 as the oordinate (n+1)-hedron.The degree of the map Ωn

j+1 is (j +1)n away from the oordinate hyperplanes. It is
(j +1)n−1 on a general intersetion point of two of the oordinate hyperplanes, and
(j+1)n−i, i = 2, 3, . . . , n, for even more speial points on the oordinate hyperplanes.



2.5. GALLARATI'S GENERALIZATION OF B. SEGRE'S SECOND CONSTRUCTION 25For our generi hoie of oordinate hyperplanes tangent to F0 the pull-bak under
Ωn

j+1 thus gives a hypersurfae F1 in Pn of degree d1 := (j + 1)·d0 with(2.9) µAj
(F1) = (j + 1)n·k0 + (n + 1)·(j + 1)n−1singularities of type Aj . E.g., applied to a smooth quadri in P3 this gives:Corollary 2.1. Let j ∈ N. There exist surfaes in P3 of degree d = 2·(j + 1)with 4·(j + 1)2 singularities of type Aj .Speializing even further to n = 3, j = 2, we obtain:(2.10) µA2

(6) ≥ 36.Notie that this is quite interesting beause we know nowadays from Miyaoka'sbound (setion 3.10 on page 40) that µA2
(6) ≤ 37 holds.Applying the preeding onstrution to F1, we obtain a hypersurfae F2 in Pnof degree d2 := (j + 1)2·d0 with

µAj
(F2) = (j + 1)n

(
(j + 1)n·k0 + (n + 1)·(j + 1)n−1

)
+ (n + 1)(j + 1)n−1singularities of type Aj . Iterating this, we get a hypersurfae Fi of degree di :=

(j + 1)i·d0 with(2.11) µAj
(Fi) = (j + 1)ni·k0 +

n + 1

j + 1
·
((j + 1)n(i+1) − 1

(j + 1)n − 1
− 1

)singularities of type Aj . Approximately, we thus have:(2.12) µAj
(Fi) ≈

1

dn
0

·
(

k0 +
(n + 1)·(j + 1)n−1

(j + 1)n − 1

)
·dn

i for i large.Notie that it is easy to ompute how many singularities we need to improvethe best known lower bounds using the formula (2.12). E.g., let us look at nodalsurfaes: To improve Chmutov's lower bound ≈ 5
12d3 for the maximum number ofnodes on a surfae of degree d (setion 4.1 on page 45) it su�es to onstrut asurfae of degree d0 with k0 nodes, s.t. k0 > 5

12d3
0 − 16

7 . Comparing this with thebest known upper bound (setion 3.10 on page 40), we �nd, e.g., that a 13652-nodalsurfae of degree 32 or a 109225-nodal surfae of degree 64 would be su�ient.We also want to mention that B. Segre's idea was redisovered and workedout in detail in the ase of plane urves with Aj -singularities by Hirano in 1992[Hir92℄. E.g., he found the lower bound of ≈ 9
32d2 usps on a plane urve of degree

d in the way desribed above by starting from a smooth oni. To our knowledge,the urrently best known lower bound for the maximum number of usps on aplane urve is Vik.S. Kulikov's [Kul03℄. He was able to hoose at every other stepof the iteration one of the oordinate axes to be bitangent to the urve whih gives
µ2

A2
(d) ' 283

60·16d2 when starting from a three-uspidal quarti. D. Paagnan (astudent of Stagnaro) announed in an abstrat of a talk at the ICM 1998 a slightlybetter lower bound, but this was never published. The urrently best known upperbound is: µ2
A2

(d) ≤ 5
16d2 − 3

8d. This result is probably due to Ivinskis [Ivi85℄, seealso: [Hir86℄, [Sak93℄. To our knowledge, the maximum number of usps on aplane urve of degree d is still unknown for d > 12.



26 2. THE PROBLEM IS DIFFICULT (1915�1959)2.5.2. Gallarati's Appliations of the Constrution. In his artile, Gal-larati performed the omputation presented in the previous setion in the speialase of nodal surfaes in P3, i.e. j = 2 and n = 3. This gave a slight improvement toB. Segre's lower bound beause B. Segre only onsidered one oordinate hyperplane(instead of four) to be tangent to the surfae. For the maximum number of nodeson a surfae of degree d = 2k · 8 Gallarati thus obtained:(2.13) µA1
(d) '

(
153

512
+

1

224

)
d3.But one annot only obtain hypersurfaes with many Aj -singularities using thisonstrution as Gallarati's example of a surfae of degree 9 in P3 with 36 ordinarytriple points showed. This surfae is niely onneted to ubi surfaes with Ekardtpoints: He started with a smooth ubi surfae with four Ekardt points, i.e. pointsin whih three of the 27 lines meet. Taking as the oordinate tetrahedron the fourplanes tangent to these Ekardt points, Ω3

3 yields a noni with 4 · 32 = 36 triplepoints (reently, Stagnaro used similar ideas to get 39 triple points [Sta04℄).Gallarati then used the 40-nodal quarti V40 in P4 obtained above to onstruta sexti in P3 in a way similar to the onstrution of the Kummer quarti (1.12)and the Togliatti quinti (2.3): Taking one of the nodes of V40 as the origin P :=
(1 : 0 : · · · : 0) of the oordinate system, V40 has the form:(2.14) V40 := x2

0F2 + 2x0F3 + F4 = 0,where Fi ∈ C[x1, x2, x3, x4] are of degree i, i = 2, 3, 4. The projetion from P tothe P3 given by x0 = 0 is a 2-fold rami�ed overing with branh lous(2.15) Ga63 := det

(
F2 F3

F3 F4

)
.Ga63 has 2·3·4 + (40 − 1) = 63 double points whih is the same number of nodesas B. Segre's sexti. Gallarati also remarked that a similar onstrution ould notwork if we started with a 45-nodal quarti in P4 beause it would give a 68-nodalsexti whih is not possible beause of Basset's bound. But it is interesting to notethat van Straten's suggestion to try to start with the 3-parameter family of 42-nodalquartis yields a 3-parameter family of 65-nodal sextis as shown in [Pet98℄, seealso setion 4.5 on page 50.2.6. Kreiss's ConstrutionIn 1955, Kreiss desribed a onstrution of some surfaes of even degree d = 2kwith many nodes [Kre55℄. Similar to a onstrution of Castelnuovo [Cas91℄, theyhave the form

f = Q(f1, f2, f3),where Q(u, v, w) is a oni in P2 and the fi are forms of degree k whih are assumedto de�ne k3 simple points. A generi surfae f has these k3 points as nodes. Wenow take hyperplanes Eij , i = 1, 2, 3, j = 1, 2, . . . , n, and put fi :=
∏k

j=1 Eij .The �bre of the rational map P3 → P2, x 7→ (f1(x) : f2(x) : f3(x)) over ageneri point of the form (0 : α : β) will have k
(
k
2

) singular points orresponding tothe intersetion points of the (
k
2

) lines E1i ∩ E1j with the surfae βf2 − αf3 = 0. Ifone hooses the oni Q to be tangent to u = 0, v = 0, w = 0 in P2 one obtains a



2.7. GALLARATI'S 160-NODAL CONSTRUCTION 27surfae of degree d = 2k with(2.16) µA1
(d) ≥ k3 + 3k

(
k

2

)
=

5

16
d3 − 3

8
d2, d = 2k, k ∈ N,singularities whih are all nodes in general.Then Kreiss assumed that in the net spanned by f1, f2, f3 there was a fourthsurfae f4 = af1 +bf2+cf3 whih deomposed as a produt of k linear forms. Thenby making Q also tangent to the line au+ bv+ cw = 0 in P2 we would get a surfaewith k3 +4k

(
k
2

)
= 3k3−2k2 singular points. To show this, Kreiss argued as follows:To have a syzygy of the form ∑4

i=1 E1i · · ·Eki = 0 between four k-tuples of linearforms we have 16k oe�ients at our disposal whih are subjet to (
k+3
3

) algebraiequations. As the inequality 16k ≤
(
k+3
3

) holds exatly for k ≤ 7, Kreiss laimed tohave onstruted surfaes of degree d = 2k, 2 ≤ k ≤ 7, with(2.17) 3k3 − 2k2 =
3

8
d3 − 1

4
d2, d = 2k, 2 ≤ k ≤ 7,nodes.Van Straten remarked that suh a onstrution is indeed possible for k = 2 ifone takes the three pairs of parallel planes of a ube, but that the problem withKreiss's argument for other k is the fat that one has to remove degenerate solutionsof the above set of equations and that this might leave us with the empty set.Nevertheless, Kreiss's work is often ited, and it took a long time until on-strutions giving at least the number of nodes that Kreiss's onstrution wouldgive. Beause of this in�uene, we list the lower bounds that Kreiss laimed to havefound despite van Straten's previously mentioned remark:

d 4 6 8 10 12 14

µA1
(d) ≥ 16 63 160 325 576 931Taking into aount Gallarati's improvement (2.13) of B. Segre's lower bound basedon an existing nodal surfae, we get with the 576-nodal dodeti the existene ofsurfaes of degree d = 2k · 12 with(2.18) µ(d) '

253

756
d3 ≈ 0.3347d3nodes. 2.7. Gallarati's 160-nodal ConstrutionDespite Kreiss's 160-nodal oti in P3, Gallarati wrote an artile on anothersuh surfae beause of its interesting onstrution [Gal57℄. He started with theform

V 9 = x1x2x3x4x5 − y1y2y3y4y5in P9. V is singular along the 100 P5's obtained by equating two of the xi and twoof the yi to zero. So, a general linear setion gives a family of 100-nodal quintisin P4. Gallarati then argued that one ould hoose this setion so that it aquireda triple point P and that the lines joining P and the 100 nodes of the quinti werenot ontained in the tangent one at P . Thus the rami�ation lous of the form(2.19) Ga160 := det

(
F3 F4

F4 F5

)
= 0has 3 · 4 · 5 + 100 = 160 nodes.



28 2. THE PROBLEM IS DIFFICULT (1915�1959)Moreover, Gallarati remarked that it might be possible to speialize further andto obtain an oti with more than 160 nodes in this way. To our knowledge, this isstill unknown.Van Straten mentioned that it might be possible to go to still higher dimensions:E.g., a general linear setion of
V 13 = x1x2x3x4x5x6x7 − y1y2y3y4y5y6y7in P3 has 225 nodes. Again, one might hope to be able to hoose this setion sothat it aquires a quadruple point whih ould then give a surfae of degree 10 with

4 · 5 · 6 + 225 = 345 nodes. This would be the same number of nodes as Barth'sdeti (see setion 4.5 on page 50). Some questions arising from this observationare the following: Does this onstrution work? If it does, is the surfae di�erentfrom Barth's (setion 4.5)? Can we go on?





Chmutov's septi TChm3
7, onstruted around 1982 using Thebyhev polynomials.Variants of this basi idea are still the best ones for onstruting hypersurfaes withmany nodes of high degree.



CHAPTER 3Modern Methods (1960�1990)From the 1960's on, a systemati theory of singularities (see e.g. [Mil68℄,[AGZV85a, AGZV85b℄) and their deformations was developped. These newmethods allowed signi�ant improvements of the known bounds around 1980.Highlights of the period between 1960 and 1990 were Beauville's proof for
µA1

(5) = 31 in 1979 (setion 3.3) as well as Varhenko's (1983, setion 3.7) andMiyaoka's (1984, setion 3.10) upper bounds. These were the �rst upper boundsfor the maximum number of nodes on a surfae of degree d whih had a betterasymptoti behaviour than the 100 year-old upper bound µDp(d) / 1
2d3 based onthe lass of the surfae. In fat, Miyaoka's bound µDp(d) / 4

9d3 is still the bestknown bound for surfaes and Varhenko's spetral bound is still the best knownone for hypersurfaes in higher dimensions. The strength of Varhenko's bound anbe illustrated by the fat that it is exat for ubi hypersurfaes in Pn as Kalker'sexamples from 1986 showed (setion 3.11). Another important ontribution wasChmutov's idea to use Thebyhev polynomials for onstruting hypersurfaes withmany singularities (setion 3.8).3.1. Stagnaro's Results on Surfaes with Many Singularities3.1.1. Surfaes with a j-tuple Point. In [Sta68℄, Stagnaro onsidered sur-faes in P3 of the form(3.1) F2m+j : x2m
0 Fj + 2xm

0 Fm+j + F2m+j = 0,where Fi ∈ K[x1, x2, x3] are forms of degree i, i ∈ {j, m + j, 2m + j} and K is analgebraily losed �eld of a harateristi whih is not a 2m(2m + 1) divisor. Thesurfaes F2m+j have a j-tuple point in (1 : 0 : 0 : 0).For j = 1 and m = 2q − 1 he then hose the Fi in a speial way s.t. F2m+j =
F4q−1 was a surfae of degree 4q−1 with 4q(2q−1)2 nodes and 12q−9 singularitiesof type A2(q−1). His reasoning still ontained an arbitrary form Θ2(q−2) of degree
2(q− 2). For a partiular example, this an be hosen in a partiular way to obtaineven more singularities. E.g., this allowed him to show the existene of a septi
F7 with 72 nodes and 16 additional usps. Notie that the previously best lowerbound for µ(d), 81, was also given by a onstrution of surfaes with singularitiesdi�erent from nodes, namely Gallarati's surfaes with a triple point and additionalnodes (2.6):(3.2) µ(7), µDp(7) ≥ 88, although still, we have only: µA1

(7) ≥ 72.With the help of the 28 bitangents to a quarti plane urve, Stagnaro then usedthe above tehnique to show the existene of surfaes F2m+4 of degree 2m + 4 with
m

(
2m+8

2

) isolated double points and an ordinary quadruple point in (1 : 0 : 0 : 0).E.g., for m = 2 this is an oti with a quadruple point and 132 additional nodes.31



32 3. MODERN METHODS (1960�1990)3.1.2. A Sexti with 64 Nodes and a Septi with 90 Singularities. 10years later [Sta78℄, Stagnaro onstruted a surfae of degree 6 with 64 singularitieswhih showed:(3.3) µA1
(6) ≥ 64.Notie that until this point, three sextis with 63 nodes had been known (see se-tions 2.4, 2.6, 2.5). Aording to B. Segre's upper bound mentioned at the end ofsetion 2.4, a 64-nodal sexti annot verify B. Segre's assumptions. And indeed,Stagnaro showed that his sexti St64 had an in�nite number of tritangent planes.Its onstrution is based on a very speial on�guration of lines and onis in theplane. 1With an analogous method he onstruted a surfae of degree 7 with 72 nodesand 18 additional usps. These are two more usps than those of the example ofthe previous setion. We have:(3.4) µA(7) ≥ 90, although still, we have only: µA1

(7) ≥ 72.Under ertain assumptions, Stagnaro also gave a slight improvement of Basset'supper bound whih omputes to 65 for the ase of degree 6. Nowadays, we knowthat 65 is the orret bound for sextis (see setion 4.5 on page 50).3.1.3. Stagnaro's Upper Bound for Ordinary q-fold Points. In [Sta83℄,Stagnaro gave a modern proof of Basset's bound and generalized it to ordinary q-fold points. Denoting by µq(d) the maximum number of q-fold points on a surfaeof degree d, he showed:(3.5) µq(d) ≤ 4d(d − 1)(d − 2)

q(q − 1)(4q − 5)and also:(3.6) µq(d) ≤ 1

2q(q−1)3
·
(
2d(d − 1)2(q − 1) − 13q + 16

−
√

4d(d − 1)(3d − 11q + 8)(q − 1) + (13q − 16)2
)
.The exatness of (3.5) for d = 5 was already known [Gal52b℄. An interestingremark of Stagnaro was that this bound is exat in several other ases, too (although(3.6) is better for d large). To prove this, he took the following generalization ofCastelnuovo's onstrution [Cas91℄ (see also setion 2.6): He onsidered surfaes

As, Bs, Cs of degree s meeting in s3 distint points. If Fq is a generi form of degree
q then(3.7) Stags,q := Fq(As, Bs, Cs)is a surfae of degree s·q in P3 with s3 ordinary q-fold points. Playing this against(3.5), he showed that s3 was the maximum number of q-fold points on a surfae ofdegree s·q if(3.8) q ≥ 1

8

(
3(3s3 − 4s2 + 3) +

√
9(3s3 − 4s2 + 3)2 − 16(5s3 − 8s + 5)

)
.This yielded an in�nite number of ases in whih the exat value of µq(d) wasknown. E.g., for s = 2, (3.8) is equivalent to q ≥ 8, so for a surfae of degree 2·q,1Van Straten heked Stagnaro's equation of St64 using omputer algebra and found it tobe wrong. Its onstrution onsists of several pages of geometrial arguments, so maybe theonstrution is basially orret, but only ontains some typos. Beause of the lengthy argumentwe were not able to �gure this out.



3.3. BEAUVILLE'S PROOF OF µA1
(5) = 31 USING CODING THEORY 33

q ≥ 8, the maximum number of q-fold points is 23 = 8. So, µ8(16) = 8, µ9(18) = 8,et. In general, the riterion gives exatness only for ases in whih the multipliityof the ordinary singularities are large ompared to the degree.Beside this, Stagnaro summarized the best known onstrutions until this pointin a table. There, he ited his septi from [Sta78℄ (setion 3.1.2) with 72 nodes and
18 usps as a surfae with 90 ordinary double points whih yielded some onfusionin the literature of the following years.Only shortly afterwards, Stagnaro wrote a preprint [Sta84℄ (ited in [Gal84℄and [Wer87℄) in whih he laimed to onstrut a sexti with 66 nodes whih wouldbe the maximum possible number of double points aording to Basset's upperbound. But shortly afterwards, (in his own MathSiNet review of Gallarati's his-torial overview), Stagnaro notied that his onstrution was false. Sine [JR97℄,we know that suh a sexti annot exist (see also setion 4.5).3.2. Teissier's and Piene's Formulas for the ClassThe geometers of the 1970's realized that the old formulas for the lass of asingular hypersurfae (see for example the one preeding equation (1.3)) were eithernot general enough or not proven in a rigorous way. This (and generalizations ofsuh results) were the motivation for Teissier [Tei75℄ and Piene [Pie78, p. 266℄to show that if a hypersurfae f of degree d in Pn has only isolated singularities
s1, . . . , sk then its lass d∗ an be omputed:(3.9) d∗ = d(d − 1)n−1 −

k∑

i=1

esi
,where esi

denotes the multipliity of the Jaobian Ideal at a singular point si. Thisnumber esi
an also be expressed as follows (see [Bru81℄): esi

= µ(si) + µ1(si),where µ(si) is the Milnor number of the singularity of f at si and µ1(x) is theMilnor number of a generi hyperplane setion of f through si. Sine d∗ ≥ 0 and
µ(si) + µ1(si) ≥ 2, this gives:(3.10) µ(d) ≤ 1

2
d(d − 1)n−1.This was the �rst upper bound for the maximum number of singular points of ahypersurfae f with only isolated singularities whih held in this generality. Forsurfaes in P3 with only double points, this bound was of ourse not as good asBasset's bound (setion 1.4), beause it was a generalization of the bound whihhad been known before the appearane of Basset's results.3.3. Beauville's Proof of µA1
(5) = 31 Using Coding TheoryThe �rst major breakthrough after the results of the 19th entury was Beauville'sproof for(3.11) µA1

(5) = 31.He alled a set of isolated ordinary double points si, i ∈ I, on a quinti fin P3 even if the sum of their exeptional divisors Ei on the blown up surfae Fwas divisible by two in Pi(F ) or equivalently that the sum of the Ei was zero in
H2(F,Z/2). Beauville showed that even sets of nodes ontaining 16 and 20 elementswere the only non-empty ones on a nodal quinti (these atually our, see [Bea79a℄and [Cat81℄). Supposing that the quinti f had at least 32 nodes s1, . . . , s32, heassoiated to the Ei a homomorphism φ : F32

2 → H2(F,Z/2). This φ has a kernel



34 3. MODERN METHODS (1960�1990)
K of dimension dim(K) ≥ 6. Looking at K ⊂ F32

2 as a ode over the �eld with twoelements, its only weights are 16 and 20 aording to the remark above. But thisontradits the following fat from oding theory: If the weights of K are greateror equal to m
2 then m ≥ 2dim(K)−1; in ase of equality, K is isomorphi to a odewhih has 1

2 dim(K) as its only weight.3.4. Brue's Upper BoundsIn [Bru81℄, Brue improved the general upper bound (3.9) for the number ofsingular points on a hypersurfae of degree d in Pn with only isolated singularities.For surfaes in P3 of odd degree d, his bound is also better than Basset's bound, al-though it still stayed ≈ 1
2d3. For the maximum number µ(d) of isolated singularitieson a hypersurfae of degree d in Pn, he showed:(3.12) µ(d) ≤ 1

2d ((d − 1)n(d + 1) + (d − 1)) , n even,

µ(d) ≤ 1
2 (d − 1)n, n odd, d odd,

µ(d) ≤ 1
2d ((d − 1)n(d + 1) + 1) , n odd, d even.His proof was based on a deformation theoretial result of Siersma [Sie74℄ and theomputation of the rank of the intersetion matrix of xd

1 +xd
2 + · · ·xd

n for n even andof xd
1 + xd

2 + · · ·xd
n + x2

n+1 for n odd using [Mil68℄. For the maximum number ofsingularities on a surfae in P3, the following bounds were known up to this point:
d 5 6 7 8 9 10 11 d

µ(d)(µA1
(d)) ≤ 32 (31) 73 (66) 108 193 (181) 256 401(383) 500 ≈ 1

2d3

µA1
(d)(µ(d)) ≥ 31 64 72 (90) 160 160(181) 325 300(337) ≈ 1

3d3Notie that Brue's list [Bru81, p. 50℄ does not show Gallarati's surfaes of degree
d = 9, 11 with a triple point and 180 and 336 additional nodes, respetively (seesetion 2.3 on page 23).3.5. Catanese's and Ceresa's Sextis with up to 64 NodesClemens's work on double overs of P3 [Cle83℄ (see also setion 3.13) andhis notion of defet raised new interest on the problem of the existene and theonstrution of surfaes f of degree d in P3 having a given number µ0 of nodes asits only singularites.Suh questions were motivations for Catanese and Ceresa to onstrut sextisin P3 with any given number µ0 = 1, 2, . . . , 64 of nodes [CC82℄. They applied B.Segre's idea to use pull-bak under a branhed overing, see setion 2.4 on page 23.B. Segre had only obtained a 63-nodal sexti in this way. For the onstrution of a
64-nodal one the authors thus had to use di�erent speializations of the oordinatetetrahedron.Catanese and Ceresa also laimed to have shown that 64 is the maximum num-ber of nodes possible on a sexti onstruted in this way. Barth's 65-nodal sexti[Bar96℄ disproved this, see setion 4.5 on page 50.3.6. Givental's Upper BoundOnly a few years after Beauville's proof that the maximum number of nodes ona quinti in P3 was exatly 31, Givental established a general upper bound [Giv84℄



3.7. VARCHENKO'S SPECTRAL BOUND 35for the maximum number of isolated singularities on a hypersurfae of degree d in
Pn whih omputes to 31 in the ase of quinti surfaes.It is worth noting that the proof of his bound is muh simpler than the oneof Varhenko's spetral bound (see setion 3.7). There is a drawbak to this: Theapproximate behaviour of Givental's bound is still µ(d) / 1

2dn. But for low degreeit is muh better than the previously known bounds:
d 5 6 7 8 9 10 11 12 d

µ(d)(µDp(d)) ≤ 31 68 (66) 104 180 247 376 484 680 ≈ 1
2d3

µA1
(d)(µ(d)) ≥ 31 64 72 (90) 160 160(181) 325 300(337) 576 ≈ 1

3d3Givental's bound an be omputed as follows: Let I be the set of multiindies m,lying stritly inside the n-dimensional ube with side d:(3.13) I := {m ∈ Zn | 0 < mi < d}.We give names to the number of elements in the following subsets of I:
M := #

{
|m| =

(
n
2 + 2k

)
d
}

,

K := #
{
|m| =

(
n
2 + 2k − 1

)
d
}

,

R := #
{
|m| −

(
n
2 + 2k − 1

)
d = ±1 or ± 1

2

}
,where |m| := m1 + · · · + mn as usual and k ∈ Z. With these notations, Given-tal's upper bound on the maximum number µn(d) of isolated singularities on ahypersurfae of degree d in Pn is:(3.14) µn(d) ≤ 1

2
((d − 1)n + M − K − R) .As the major motivation for the researh on the subjet, Givental mentionedthe following onjeture on the number of singular points on a hypersurfae. It wasformulated by Arnold in 1981 in a disussion of Brue's artile [Bru81℄ as Varhenkosaid in the introdution of [Var83℄: Arnold suggested the bound µn(d) ≤ An(d),where(3.15) An(d) := #

{
(k1, . . . , kn) ∈ I

∣∣∣ 1

2
(n − 2)d + 1 <

∑
ki ≤

1

2
nd

}
.

An(d) is thus a ertain number of integer points within an n-dimensional ube.Givental's bound is slightly greater than An(d) for most degrees. Nowadays, thenumbers An(d) are alled Arnold numbers. The orretness of Arnold's onjeturewas shown only shortly afterwards by Varhenko (see next setion).3.7. Varhenko's Spetral BoundNot long after Givental's new upper bound, Varhenko was able to prove theonjeture of Arnold (see equation (3.15)) by showing a theorem on the spetrumof a singularity [Var83℄. Basially, the spetrum onsists of the eigenvalues of themonodromy operator of the singularity, see e.g. [Kul98℄, [AGZV85b, h. 14℄ fordetails on the spetrum. Varhenko's nowadays alled Spetral Bound was the �rstupper bound for the maximum number of singularities on a surfae of degree dwhih had an approximative behaviour of less than 1
2d3. In fat, he showed:(3.16) µn(d) ≤ An(d),



36 3. MODERN METHODS (1960�1990)where An(d) is the Arnold number de�ned in (3.15). For surfaes in P3, this om-putes to:(3.17) µ(d) ≤
{ 23

48d3 − 9
8d2 + 5

6d, d ≡ 0 mod 2,
23
48d3 − 23

16d2 + 73
48d − 9

16 , d ≡ 1 mod 2.This leads to the following table:
d 5 6 7 8 9 10 11 12 d

µ(d)(µA(d)) ≤ 31 68 (66) 104 180 246 375 480 676 ≈ 23
48

d3

µA1
(d)(µ(d)) ≥ 31 64 72 (90) 160 160(181) 325 300(337) 576 ≈ 1

3d3Arnold and Givental omputed the approximate behaviour of An(d):(3.18) An(d) ≈
√

6

πn
dn + O(dn−1) for large n.As already mentioned, Varhenko's previous bound is based on a property ofthe spetrum of a singularity, more preisely the so-alled semiontinuity of thespetrum (see [Var83℄ and also [Kul98℄, [AGZV85b, h. 14℄). It annot onlybe applied to ordinary double points, but to any type of isolated singularity in n-dimensional spae for whih it is possible to ompute the spetrum. For many ases,this omputation has already been performed. The spetrum an even be alulatedusing Endraÿ's Singular library spetrum.lib or Shulze's library gaussman.lib.These libraries also ontain proedures for omputing the bound for the maximumnumber of singularities of a given type on a hypersurfae of degree d in Pn basedon the semiontinuity property:LIB "gaussman.lib"; LIB "spetrum.lib";pro varhenko_bound_general(int n, int d, poly sing) {poly p = 0;for(int i=1; i<=n; i=i+1) { p = p + var(i)^d; }list s = spetrumnd(p);list ss = spetrumnd(sing);return(spsemiont(s,list(ss),1)[1℄); }E.g., with this proedure the Singular odering r = 0,(x,y,z),ds;varhenko_bound_general(3, 7, x^2+y^2+z^2);gives 104 whih is the Varhenko's bound for the maximum number of nodeson a septi surfae in P3.To explain how to ompute formulas for the bound in more general ases, let uslook at Aj-singularities on surfaes of degree d in P3. It is known that Varhenko'sspetral bound an be desribed by a polynomial of degree 3 in d, but we ouldnot �nd expliit statements for j > 1 in the literature. In the following we explainbrie�y how to proeed in order to ompute these polynomials.For even degree d ≥ 4 the spetrum sp(d) of the singularity xd + yd + zd = 0in C3 onsists of the spetral numbers sd(i) = i+2

d , i = 1, 2, . . . , 3(d − 1) − 2, withmultipliities md(i), where
• md(1) = 1,
• md(i + 1) = md(i) + 1 + i, i < d − 1,
• md(i + 1) = md(i) + 2(imid − i) + 1, d − 1 ≤ i < imid := 3d

2 − 2,
• md(3(d− 1)− 1− i) = md(i), 1 ≤ i ≤ imid (symmetry of the spetrum).



3.7. VARCHENKO'S SPECTRAL BOUND 37The spetrum of an Aj-singularity is also well-known (see e.g. [AGZV85b, p. 389℄).Its spetral numbers are j+2
j+1 , j+3

j+1 , . . . , 2j+1
j+1 , all with multipliity 1.Example 3.1. The spetrum sp(6) of the singularity x6 + y6 + z6 is:

i 1 2 3 4 5 6 7 8 9 10 11 12 13spetral number si
3
6

4
6

5
6

6
6

7
6

8
6

9
6

10
6

11
6

12
6

13
6

14
6

15
6multipliity mi 1 3 6 10 15 18 19 18 15 10 6 3 1The spetral numbers of the A2-singularity are: 8

6 , 10
6 , both with multipliity 1. 2To ompute Varhenko's bound we have to hoose an open interval of length 1,say I = ( ir+2−d

d , ir+2
d ), of the spetrum sp(d) whih ontains all spetral numbersof the Aj -singularity and suh that the sum of the multipliities of the spetralnumbers in the interval is minimal. Then we have to sum up all the multipliitiesin this interval and divide by j.Let us write d = k·(j + 1) + l. Then we may hoose I := ( ir+2−d

d , ir+2
d ), where

ir := k·(2j +1)+
⌊

l·(2j+1)
j+1

⌋
− 1. We introdue some notations: nl := imid − (d− 1),

nr := ir − imid − 1, nll := d − 1 − nl − nr, mmid =
∑d−1

i=1 i + (d
2 − 1)2. Usingthese we an ompute Varhenko's bound VarAj

(d) for the maximum number of
Aj -singularities on a surfae of degree d in P3 for the ase d, j ∈ N with d ≥ 4:(3.19) VarAj

(d) = 1
j ·

(
1
2 ·

(∑d−1
i=1 i +

∑d−1
i=1 i2 − ∑d−1−nll

i=1 i − ∑d−1−nll

i=1 i2
)

+(nr + nll) · mmid −
∑nr

i=1 i2 −
∑nl−1

i=1 i2
)

2Example 3.2. Let us look at the ase d = 6, j = 2 as in example 3.1. In thisase, the onstants used above have the following values: k = 2, l = 0, ir = 9,
imid = 7, nl = 2, nr = 1, nll = 2, mmid = 19. We an now easily ompute thebound VarA2

(d) in (3.19) for d = 6 (ompare the table in example 3.1):VarA2
(6) =

1

2
·
( 15 + 55 − 6 − 14

2︸ ︷︷ ︸
=10+15

+ 3 · 19 − 1 − 1︸ ︷︷ ︸
=18+19+18

)
= 40. 2Using some summation formulas we �nd the following bounds for d ≥ 4:

• µA1
(d) ≤ VarA1

(d) =

{ 23
48d3 − 9

8d2 + 5
6d, d ≡ 0 mod 2,

23
48d3 − 23

16d2 + 73
48d − 9

16 , d ≡ 1 mod 2.

• µA2
(d) ≤ VarA2

(d) =





31
108d3 − 25

36d2 + 1
2d, d ≡ 0 mod 3,

31
108d3 − 31

36d2 + 17
18d − 10

27 , d ≡ 1 mod 3,
31
108d3 − 7

9d2 + 3
4d − 5

27 , d ≡ 2 mod 3.

• µA3
(d) ≤ VarA3

(d) =





235
1152d3 − 49

96d2 + 13
36d, d ≡ 0 mod 4,

235
1152d3 − 235

384d2 + 785
1152d − 35

128 , d ≡ 1 mod 4,
235
1152d3 − 37

64d2 + 173
288d − 3

16 , d ≡ 2 mod 4,
235
1152d3 − 209

384d2 + 569
1152d − 35

384 , d ≡ 3 mod 4.The formulas are not orret for d = 3 for some j beause the spetrum of the
x3 + y3 + z3 = 0 singularity does not have enough spetral numbers to �t into thedesription above.



38 3. MODERN METHODS (1960�1990)3.8. Thebyhev Polynomials and Hypersurfaes with Many NodesChmutov suggested (see [AGZV85b, p. 419℄ or Varhenko's overview artile[Var84, p. 2782℄) to onsider the hypersurfae TChmn
d of degree d in Pn with a�neequation:(3.20) TChmn

d :

n−1∑

j=0

Td(xj) =

{
0, n even,
−1, n odd,where(3.21) Td(z) :=

⌊ d
2
⌋∑

i=0

(−1)i

(
n

2i

)
zn−2i(1 − z2)idenotes the Thebyhev polynomial of degree d having two ritial values ±1 (see[Riv74℄). Td an be reursively de�ned as follows:(3.22) T0(z) := 1, T1(z) := z, Td(z) := 2z·Td−1(z) − Td−2(z).These polynomials have many other nie properties. We only mention two more ofthem. First, the Td(z) satisfy the equation:(3.23) Td(cos(α)) = cos(dα), α ∈ [0, π],and its derivative T ′

d(z) vanishes at αk := cos
(

kπ
d

)
, 1 ≤ k ≤ d − 1 whih gives riseto a maximum (resp. minimum) if k is even (resp. odd). Seond, the plane urves

C1 := Td(x) + Td(y) (resp. C2 := Td(x) − Td(y)) fator into d
2 irreduible onis(resp. d−2

2 irreduible onis and two lines) if d is even and they both fator into
d−1
2 irreduible onis and a line if d is odd (see [Wer87, p. 34℄).

y = T7(x) TChm2
7 = 0 TChm2

7 = 5z TChm3
7 = 0Figure 3.1. The Geometry of Chmutov's Hypersurfaes.It is easy to see that the hypersurfaes TChmn

d are singular exatly at the points
(αk1

, . . . , αkn
), 1 ≤ ki ≤ n − 1, where ⌊n

2 ⌋ of the indies ki are odd and the otherare even (see �g. 3.1 for an illustration of the ase n = 2). All singularities arenodes and their number is
µ(TChmn

d ) = cndn + O(dn−1),where c3 = 3
8 and more preisely µ(TChm3

d) = 3
8d2(d−2) if d is even and µ(TChm3

d) =
3
8 (d − 1)3 if d is odd. This showed:(3.24) µA1

(d) '
3

8
d3



3.9. GIVENTAL'S CUBICS IN P
n 39whih was the best approximate behaviour for n = 3 known up to this point. Itis easy to ompute the exat number also in higher dimensions, e.g. for d oddand n even we get µ(TChmn

d ) =
(

d−1
2

)n·
(

n
n/2

) nodes. A omputation of Giventalonerning the approximate behaviour with respet to n showed: cn ≈
√

2
πn forlarge n, see [Var84, p. 2782℄ (ompare (3.18)). When assuming the orretness ofKreiss's onstrution, it improves the bounds for low degree d only in a few ases:

d 5 6 7 8 9 10 11 12 d

µ(d)(µA(d)) ≤ 31 68 (66) 104 174 246 360 480 645 ≈ 4
9d3

µA1
(d)(µ(d)) ≥ 31 64 81 (90) 160 192 325 375 576 ≈ 3

8
d33.9. Givental's Cubis in PnGivental (see [AGZV85b, p. 419℄, [Var84, p. 2782℄) used Chmutov's idea toonstrut ubis in Pn with a number of nodes that almost reahed Varhenko'sspetral bound. Instead of Thebyhev Polynomials whih are polynomials withfew ritial values in one variable, he used a polynomial with few ritial values intwo variables: To understand the onstrution, let us start with a regular triangle

R3(x, y) = x3 − 3xy2 + 3x2 + 3y2 − 4whose non-zero ritial point has ritial value +1, see �g. 3.2.
y = T3(x) R3(x, y) = 0 z − R3(x, y) = 0Figure 3.2. The Thebyhev Polynomial T3(x) of degree threeand a regular triangle, one seen in the plane, one in spae.Then the number of singular points (all are nodes) of the ubi hypersurfae in

Pn with a�ne equation(3.25) Givn
3 :

n
2
−1∑

j=0

(−1)j·(1+(n mod 2))R3(x2j , x2j+1) = −(n mod 2)
T3(xn−1) − 1

2
,is gn ≈ 2n

√
16

3πn for n large. Givental also notied that An(3) ≈ 2n
√

8
πn for n largewhih showed: gn

An(3) ≈
√

2
3 ≈ 0.8165. In fat, Varhenko's spetral bound is exatfor ubis in Pn as Kalker showed only shortly afterwards, see setion 3.11.In both ited texts [AGZV85b, p. 419℄, [Var84, p. 2782℄, the equations forGivn

3 are only given for n ≡ 0 mod 4, but they list the numbers of nodes that anbe obtained using Givental's onstrution. These numbers an be realized using theequations given above:
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n 1 2 3 4 5 6 7 8 9 n

µn(3) = µn
A1

(3) = 1 3 4 10 15 35 56 126 210
(
n+1
⌊n

2
⌋
)

µn(3) ≥ 1 3 4 10 15 33 54 118 189 ≈ 2n
√

16
3πn3.10. Miyaoka's Bound for Surfaes with Rational Double PointsParallel to Varhenko's spetral bound, there appeared another very importantupper bound due to Miyaoka. In [Miy84℄, Miyaoka proved an inequality that heould apply to a normal surfae fd of degree d in P3 with only rational doublepoints as singularities to prove:(3.26) µDp(d) ≤ 4

9
d(d − 1)2.This is still the best known upper bound for the maximum number of rational doublepoints on a surfae in P3 for large degree. Only for odd low degree, Varhenko'sbound is better in some ases. The following table gives the bounds known up tothis point:

d 5 6 7 8 9 10 11 12 d

µ(d)(µDp(d)) ≤ 31 68 (66) 104 174 246 360 480 645 ≈ 4
9
d3

µA1
(d)(µ(d)) ≥ 31 64 81 (90) 160 192 325 375 576 ≈ 1

3d3Miyaoka's bound an also be applied to ompute the maximum number ofsome partiular type of rational double points: Let Xp be the germ of a quotientsingularity (C/Gp)0, where Gp is a �nite subgroup of GL(2,C) having the originas its unique �xed point. Let X̃E be the minimal resolution of Xp and E theexeptional divisor. The Euler numbers e(X̃E) and e(E) oinide. Put ν(p) :=
e(E) − 1

|Gp| . The non-negative rational number ν(p) is an analyti invariant ofthe quotient singularity Xp whih is not di�ult to ompute in the ases we areinterested in:(3.27) ν(p) = 0 if Xp is smooth,
ν(p) = 2 − 1

j if Xp is an ordinary j-tuple point,
ν(p) = j + 1 − 1

j+1 = j(j+2)
j+1 if Xp is an Aj-singularity.Miyaoka showed: If X is a projetive surfae with only rational double points

p1, . . . , pk and whose dualizing line bundle OX(Kx) is numerially e�etive, then(3.28) k∑

i=1

ν(pi)+e(D) ≤ c2(X̃)−1

3
(KX+D)2 = 12χ(OX)−1

3
(4K2

X+2KXD+D2)for any e�etive normal rossing divisor D away from the singularity. Now, let
fd ⊂ P3 be a normal surfae of degree d with only rational double points p1, . . . , pk.Then (3.28) implies:(3.29) k∑

i=1

ν(pi) ≤
2

3
d(d − 1)2.E.g., as ν(p) ≥ 3

2 for singular points, we get (3.26). For any �xed j ∈ N, (3.27)yields for the maximum number µAj
(d) of Aj-singularities on a surfae of degree d



3.11. KALKER'S CUBICS IN P
n 41in P3:(3.30) µAj

(d) ≤ MiyAj
(d) :=

2

3

j + 1

j(j + 2)
d(d − 1)2.There also exists a generalization of Miyaoka's result to more general singularitiesby J. Wahl, see setion 4.10 and [Wah94℄.3.11. Kalker's Cubis in PnIn his Ph.D. thesis [Kal86℄, Kalker gave examples of ubis in Pn that showedthat Varhenko's spetral bound for the maximum number µn(3) of singularities onubi hypersurfaes in Pn was sharp for all n ∈ N:(3.31) µn(3) = An(3) =

(
n + 1⌊

n
2

⌋
)

.He de�ned ubis Kaln3 as generalizations of the equations of the four-nodal Cayleyubi in P3 (1.2) and C. Segre's ubi in P4 (1.11) (we hose a slightly di�erentnotation for Kalker's equations for odd n in order to underline the similarity to theCayley ubi):(3.32) Kaln3 :

∑n+1
i=0 x3

i = 0,
∑n+1

i=0 xi = 0, for n even,

∑n
i=0 x3

i + 1
4x3

n+1 = 0,
∑n+1

i=0 xi = 0, for n odd.The singularities of these ubis in Pn are exatly the points in whih the twohypersurfaes in Pn+1 are tangent to eah other (�g. 3.3).
Kal13 ⊂ P1 Kal23 ⊂ P2Figure 3.3. The Geometry of Kalker's Hypersurfaes. Kal13 ⊂ P1onsists of two points, one doubled: In the projetive view one ansee the (blak) fermat ubi x3

0 +x3
1 + 1

4x3
2 touhing the hyperplane

x0 + x1 + x2 ≃ P1 in one point and meeting it transversally inanother one. To illustrate the onstrution of the Kalker ubiKal23 ⊂ P2 whih takes plae in P3, we take the a�ne hart x3 = 1.Here one sees the three points in whih the hyperplane x0 + x1 +
x2 + 1 ≃ P2 touhes the ubi x3

0 + x3
1 + x3

2 + 13. Kal23 onsists ofthree lines.The following table lists the numbers of nodes on Kalker's hyperubis. This isone of the very rare ases in whih we know the maximum number of singularities:
n 0 1 2 3 4 5 6 7 8 9 10 n

µn(3) = µn
A1

(3) = 0 1 3 4 10 15 35 56 126 210 462
(
n+1
⌊ n

2
⌋
)



42 3. MODERN METHODS (1960�1990)Of ourse, this onstrution an also be generalized to higher degrees, althoughKalker did not mention it beause he was only interested in ubis. Moreover, thisonstrution does not seem to be very good for d > 3.3.12. Two Nodal Quintis in P4Sine the end of the 19th entury, the maximum numbers of nodes on a three-fold in P4 of degree ≤ 4 are known, see 1.5 on page 18. We have just seen thatVarhenko's bound is exat for ubis in any dimension. In 1985 and 1986, Hirze-bruh [Hir87℄ and Shoen [Sh86℄ onstruted the �rst examples that ame lose toVarhenko's upper bound (setion 3.7 on page 35) for quintis in P4: µ4(5) ≤ 135.Shoen's quinti(3.33) Sh4
5 :

4∑

i=0

x5
i − 5

4∏

i=0

xi = 0has exatly 125 nodes (see also [Wer87, p. 84℄).He was only interested in threefolds, but it is obvious how his onstrution anbe generalized to higher dimensions. But the variants S̃hd−1

d in Pd−1 given byS̃hd−1

d :
∑d−1

i=0 xd
i − d

∏d−1
i=0 xi = 0 have only dd−2 = dn−1 nodes.Hirzebruh's quinti an also be generalized to higher dimensions and otherdegrees. In fat, the onstrution is exatly Givental's (3.25), but instead of atriangle R3(x, y), he took a �ve-gon

R5(x, y) = x5 − 10x3y2 + 5xy4 − 5x4 − 10x2y2 − 5y4 + 20x2 + 20y2 − 16(see �g. 3.4) and Hirzebruh only applied it in four-dimensional spae beause hewas only interested in quinti threefolds. The (d − 1)2 = 16 distint ritial pointsof R5(x, y) lie on three di�erent ritial levels: (
5
2

)
= 10 have ritial value 0 (theintersetions of the �ve lines), 5 with ritial value v1 (within eah triangle) and 1with ritial value v0 6= 1 (the enter).

R5(x, y) = 0 z − R5(x, y) = 0Figure 3.4. The regular �ve-gon, one seen in the plane, one in spae.It is now lear that the quinti in P4 given by(3.34) Hirz45 : R5(x0, x1) − R5(x2, x3) = 0has exatly 126 ordinary nodes, 100 oming from the intersetion of two lines, and
25 + 1 others. Thus:(3.35) µ4

A1
(5) ≥ 126.



3.13. THE DEFECT AND THE EXISTENCE OF CERTAIN NODAL HYPERSURFACES 43In view of Givental's idea (3.25), this onstrution an also be generalized tohigher dimensions and degrees. Although we ould not �nd this generalization inthe literature, its basi idea was ertainly known to those working on the subjetat that time. We denote by R5(x, y) the regular �ve-gon normalized s.t. the ritialvalue over the origin is +1. Notie that then the other non-zero ritial point is −1.We an translate Givental's equations (3.25) for ubis word by word:(3.36) GHn
5 :

n
2
−1∑

j=0

(−1)j·(1+(n mod 2))R5(x2j , x2j+1) = −(n mod 2)
T5(xn−1) − 1

2
.For low n, we get the following numbers of nodes on quintis in Pn:

n 1 2 3 4 5 6 7 8 9

µn(5) ≤ 2 10 31 135 456 1918 6728 27876 100110

µn
A1

(5) ≥ 2 10 31 126 420 1620 5750 23126 78300If we replae in GHn
5 the polynomial R5(x, y) by another polynomial of degree

d whih has exatly three ritial values of the form 0, 1,−1 then the formula anbe used verbatim. Instead, if it is not possible to bring the ritial values of apolynomial into this form then another formula is better, see e.g. 4.1 on page 45.3.13. The Defet and the Existene of Certain Nodal HypersurfaesIn [Cle83℄, Clemens introdued the notion of defet δ(X) := b4(X) − b2(X) ofa nodal hypersurfae X in Pn, where bi denotes the ith Betti number. If X deforms,but maintains its number of nodes, the defet remains onstant.Based on this artile, Borea [Bor90℄ onsidered the speial ase of nodal three-folds with trivial dualizing sheaf and was able to interpret the defet as follows: Let
X be a quinti threefold with µ(X) nodes and defet δ(X). Then there exist quintiswith 0 ≤ k ≤ µ(X) nodes with at most δ(X) exeptions. The same holds for doublesolids rami�ed over a nodal oti surfae. This result an be seen as a generaliza-tion of a result of Greuel/Karras in [GK89℄ whih states that hypersurfaes withall lower numbers of nodes exist if X is unobstruted, i.e. if a ertain ohomologygroup vanishes. Using the defet, their ondition an be written as δ(X) = 0.Several people omputed the defet in some speial ases. E.g., Werner [Wer87℄treated the ase of several variants of Chmutov's otis whih are of the form pre-sented in setion 3.8 modulo sign hanges. Among these, there is a 108-nodalexample with defet δ = 0. Using Borea's previous result this shows the existeneof otis with 0, 1, . . . , 108 nodes. Another of the otis has 144 nodes and defet
δ = 9. Thus between 108 and 144 at most nine gaps may appear. Shoen's quintiin P4 (setion 3.12 on the faing page) has 125 nodes and defet δ = 24. Thus,up to 125 at most 24 gaps may exist, but most of them have to our for largenumbers of nodes beause Borea gives an 100-nodal example with defet δ = 3. Toour knowledge it has not been heked yet whih numbers of nodes atually ouron oti surfaes or quinti threefolds. It might be possible to apply our methodspresented in part 2 of this thesis for this purpose beause most of the examples anertainly be found in some obvious families.



Endraÿ's 168-nodal oti from 1996. He loated it within a �ve-parameter familyof D8 ×Z2-symmetri 112-nodal surfaes of degree eight.



CHAPTER 4Reent Results (1991 until now)Sine Miyaoka's and Varhenko's upper bounds for the maximum possible num-ber of nodes from the early 1980's there has not yet appeared any essentially newidea for produing new upper bounds. But sine the early 1990's several new lowerbounds have been found.First of all, Chmutov improved his own general onstrution in the ase of nodalsurfaes and threefolds. Both families are still the best known ones for generaldegree.Apart from that, several speial ases have been improved. E.g., van Stratenonstruted a quinti in P4 with 130 nodes, and Barth onstruted his famous sextiin P3 with 65 nodes. Using methods similar to Beauville's proof of µA1
(5) = 31,Ja�e and Ruberman were then able to show that µA1

(6) = 65. So, µA1
(d) is knownfor d ≤ 6.In the ases of degree 8, 10, 12 there also appeared onstrutions exeedingChmutov's general lower bound. But for odd degree d > 5 no suh surfae wasfound.Parallely, people started to onsider also other singularities of small degree.E.g., Barth onstruted a quarti with the maximum number of 8 usps and aquinti with 15 usps. Based on results of Nikulin and Urabe on K3 lattie theory,Yang ompleted the enumeration of all ombinations of singularities on quartis in

P3 using omputers.4.1. Chmutov's Hypersurfaes using Folding PolynomialsWhen trying to generalize Givental's ubis from setion 3.9 on page 39 in thease of surfaes to higher degree d one realizes the following. For the number of nodeson the resulting surfaes only the ritial points with two di�erent ritial valueson a plane urve are relevant. This immediately leads to the question what themaximum number of ritial points on two ritial levels of a plane urve of degree
d is. Of ourse, a trivial upper bound is 2·

(
d
2

)
≈ d2. Chmutov sueeded in provinga stronger result [Chm84℄ similar to Varhenko's spetral bound. In [Chm95℄ hementioned the speial ase of non-degenerate ritial points for whih this leads toan upper bound of ≈ 7

8d2 ritial points on two levels. As he remarked in [Chm92℄,this bound immediately implies a bound for the maximum number µ3sep(d) of nodeson a surfae of degree d of the form of Givental's ubis p(x, y)+ q(z) = 0 (he alledthem surfaes in separated variables):(4.1) µ3sep(d) /
7

16
d3.This is less than Miyaoka's upper bound: 7

16d3 = 63
144d3 < 64

144d3 = 4
9d3. Thus, it isnot possible to reah Miyaoka's upper bound with surfaes in separated variables.45



46 4. RECENT RESULTS (1991 UNTIL NOW)In view of this upper bound, it is natural to ask how lose one an get. Weare thus looking for plane urves with very few di�erent ritial values (in fat, theminimum is three for plane urves of degree d ≥ 4). The �rst remark is that regular
d-gons have exatly (

d
2

) ritial values with ritial value 0 and only d ritial valueson the other ritial levels.Chmutov [Chm92℄ realized that the so-alled folding polynomials FA2

d (x, y)assoiated to the root system A2 (see [Wit88℄ and also [HW88, EL82℄) are verywell-suited for this purpose. In fat, they give ≈ 5
6d2 ritial points on two levels. In[Chm95℄, Chmutov even onjetured that this is the maximum number of ritialpoints on two ritial levels. The folding polynomials FA2

d (x, y) an be de�ned asfollows:
(4.2) F

A2

d (x, y) := 2+det
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0 · · · · · · 0 1 y x

1

C

C

C

C

C

C

C

C

C

C

A

+det

0

B

B

B

B

B

B

B

B

B

B

@

y 1 0 · · · · · · · · · 0

2x y
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3 x
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C

C
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C

A

.These polynomials are generalizations of the Thebyhev polynomials in manysenses (see [Wit88, HW88, EL82℄). The property whih is important for Chmutovis the fat that they have very few (in fat, three) di�erent ritial values. He showedthat suh a polynomial FA2

d had (
d
2

) ritial points with ritial value 0 and(4.3) 1
3d(d − 3) if d ≡ 0 mod 3,
1
3 (d(d − 3) + 2) otherwiseritial points with ritial value −1. The other ritial points have ritial value

8. As one might guess from the number (
d
2

) of ritial points on the level 0, thepolynomial FA2

d onsists in fat of d lines.The number of nodes of Chmutov's surfaes de�ned by the a�ne equation(4.4) Chm3
d : FA2

d (x0, x1) +
1

2
(Td(x2) + 1) = 0an easily be omputed using (4.3):(4.5) 1

12

(
5d3 − 13d2 + 12d

) if d ≡ 0 mod 6,
1
12

(
5d3 − 13d2 + 16d− 8

) if d ≡ 2, 4 mod 6,
1
12

(
5d3 − 14d2 + 13d− 4

) if d ≡ 1, 5 mod 6,
1
12

(
5d3 − 14d2 + 9d

) if d ≡ 3 mod 6.Thus:(4.6) µA1
(d) '

5

12
d3.For low even degree, Kreiss's onstrution (if orret) is at least as good as Chmu-tov's: µ(Chm3

8) = 321 < 325 and for µ(Chm3
12) = 576.

d 5 6 7 8 9 10 11 12 d

µ(d)(µDp(d)) ≤ 31 68 (66) 104 174 246 360 480 645 ≈ 4
9d3

µA1
(d)(µ(d)) ≥ 31 64 93 160 216 325 425 576 ≈ 5

12
d3



4.2. BARTH'S 31-NODAL QUINTIC IN P
3 47Of ourse, the folding polynomials FA2

d (x, y) an also be used in higher di-mensions (ompare Hirzebruh's quinti (3.34) and Givental's ubis (3.25)). In[Chm92℄ Chmutov only mentioned the ase P4 in whih Chm4
d := FA2

d (x0, x1) −
FA2

d (x2, x3) gives threefolds with approximately 7
18d4 nodes. With Varhenko'sspetral bound, we get:

d 3 4 5 6 7 8 9 10 11 12

µ4(d) ≤ 10 45 135 320 651 1190 2010 3195 4840 7051

µ4
A1

(d) ≥ 10 45 126 277 566 1029 1720 2745 4150 6013In view of the equations of Givental's ubis in Pn, we an easily write downequations for hypersurfaes with many nodes in Pn using the folding polynomials.As we ould not �nd them in the literature, we give them here explitly:(4.7) Chmn
d :

⌊n
2
⌋−1∑

j=0

(−1)jFA2

d (x2j , x2j+1) = (n mod 2)·1
2
(Td(xn−1) + 1).In some ases, we get more nodes if we replae the sign (−1)j by 1, e.g. if n = 5.Furthermore, for small degree, it is easy to �nd out whih are the best plane urvesfor this purpose. E.g., in degree 4, there is a better hoie than FA2

4 : The unionof four lines, s.t. two of non-singular ritial points have ritial value −1 and theremaining one has ritial value +1. Of ourse, Chmutov's upper bound for surfaesin separated variables also generalizes to higher dimensions.But notie that Chmutov's older onstrution (setion 3.8 on page 38) is asymp-totially better than his new onstrution for any �xed n ≥ 5 and large d. Intu-itively, the reason for this is that the two non-zero ritial values of the polynomials
Td(x) + Td(y) also sum up to zero; this is not the ase for FA2

d . In P5, we get thefollowing table for low degree:
d 3 4 5 6 7 8 9

µ5(d) ≤ 15 126 456 1506 3431 7872 14412

µ5
A1

(d) ≥ 15 104 420 1080 2583 5760 103684.2. Barth's 31-nodal Quinti in P3Although Barth only published his onstrution of a 31-nodal quinti in P3as a preprint, it is quite interesting and we thus desribe it here shortly (a longerexposition an be found in [End96℄).As a starting point, Barth took a family of quintis ∏4
i=0 Pi(x, y)−az·Q2 omingfrom Rohn's onstrution 1.3 on page 16. In order to be able to redue the problemin three-spae to a planar one, he took planes Pi and a quadri Q whih admit thesymmetry D5 of a �ve-gon: Fa,b,d := P − az·Q2, where(4.8) P :=

∏4
j=0

(
cos

(
2πj
5

)
x + sin

(
2πj
5

)
y − w

)

= 1
16

(
x5 − 5x4w − 10x3y2 − 10x2y2w + 20x2w3

+5xy4 − 5y4w + 20y2w3 − 16w5
)
,

Q := x2 + y2 + bz2 + zw + dw2,and where a, b, d ∈ C are still to be determined.



48 4. RECENT RESULTS (1991 UNTIL NOW)
Figure 4.1. Barth's Togliatti quinti with 31 nodes and its re-strition to the plane y = 0. Notie that this plane quinti onsistsof a line and an irreduible quarti. This latter has three nodestwo of whih are solitary (also alled A+

1 ) points.A generi member of this family has 20 nodes. Beause of the symmetry, fourof these are in eah of the symmetry planes
Ej :=

{
sin

(2πj

5

)
x = cos

(2πj

5

)
y

}
, j = 0, 1, . . . , 4.In fat, the symmetry allowed Barth to restrit his attention to one of these planes,say E0. Every node N of the plane urve Ca,b,d := E0 ∩ Fa,b,d indues an orbit oflength �ve if N does not lie on the axes x = y = 0. In order to get 31 ordinary doublepoints, we thus have to �nd parameters a, b, d, s.t. the plane quinti Bar31 := Ca,b,dhas one additional node on the axes x = y = 0 and two additional nodes away fromthis axes.But an irreduible quinti an have at most six nodes, s.t. our urve Ca,b,d hasto be reduible in order to have the seven nodes that we need. In fat, a lengthyanalysis shows that the urve is a union of a line and a three-nodal quarti with theparameters

a = − 5

32
, b = −5 −

√
5

20
, d = −(1 +

√
5).The only node on the axes x = y = 0 omes from the intersetion of the line withthe quarti. The surfae Fa,b,d orresponding to these parameters has therefore

20 + 2 · 5 + 1 = 31 nodes, see �g. 4.1.4.3. Van Straten's 130-nodal Quinti in P4As we have seen in setion 1.5 on page 18, C. Segre's 10-nodal ubi and the
45-nodal Burkhardt Quarti in P4 have nie Σ6-symmetri equations. In [vS93℄,van Straten analyzed all singular examples in the spae of all Σ6-symmetri quintisin theP4 given by utting theP5 by the hyperplane σ1(x0, . . . , x5) = 0. It is spannedby σ5(x0, . . . , x5) and σ2(x0, . . . , x5)σ3(x0, . . . , x5). Besides several other interestingquintis, this penil(4.9) vS(α:β) := α·σ5(x0, . . . , x5) + β·σ2(x0, . . . , x5)·σ3(x0, . . . , x5)ontains the 130-nodal example vS(1:1) showing (ompare setion 3.12):(4.10) µ4

A1
(d) ≥ 130.



4.4. GORYUNOV'S SYMMETRIC QUARTICS IN P
n 49The nodes of this quinti form three orbits under the operation of the Σ6 on theoordinates:(4.11) (1 : 1 : 1 : −1 : −1 : −1) 10 nodes,

(1 : 1 : −1 : −1 :
√
−3 :

√
−3) 90 nodes,

(1 : 1 : 1 : 1 :
√
−3 − 2 :

√
−3 − 2) 30 nodes.As one might expet, this 130-nodal quinti has some nie properties similar tothose of C. Segre's ubi and the Burkhardt quarti. But in ontrast to these twovarieties in P4, it is not invariant under the simple group of order 25920.4.4. Goryunov's Symmetri Quartis in PnInspired by the onstrution of the 130-nodal van Straten quinti, Goryunov[Gor94℄ looked at all nodal quartis and ubis in Pn whih are invariant underthe re�etion groups An or Bn.Of ourse, in the ase of ubis in Pn, his examples ould not give more nodesthan Kalker's examples (setion 3.11 on page 41) beause those already reahedVarhenko's upper bound. In fat, Goryunov found isomorphi ubis using hismethod.But his Bn-symmetri quartis gave rise to new lower bounds. His onstrutionis based on his observation that one an reformulate the ondition that a hyper-surfae in Pn has a singularity in the ase of hypersurfaes symmetri under theonsidered re�etion groups: It turned out to be equivalent to the ondition thatthe orresponding hypersurfae in the orbit spae is nontransversal to the disrim-inant of the group. He thus onstruted his examples with many nodes by �ndinga hypersurfae in the orbit spae that is nontransversal to the strata of very longorbits.Using this method he showed that the Bn+1-symmetri hypersurfae(4.12) Goryn

4 (a) : 2·(a + 1) ·
( ∑

0≤i<j≤n

x2
i x

2
j

)
− a·

( ∑

0≤j≤n

x2
j

)2

= 0has exatly 2a
(
n+1
a+1

) nodes. This number is maximal for a = ⌊ 2n
3 ⌋ and a = ⌊ 2n+1

3 ⌋whih both yield:(4.13) µn
A1

(4) ≥ 2⌊ 2n

3
⌋
(

n + 1

⌊2n
3
⌋ + 1

)
.His An+1-symmetri quartis exeed this number only for n = 4 (this gives the

45-nodal Burkhardt Quarti) and n = 7. We obtain the following table (withVarhenko's upper bound):
n 2 3 4 5 6 7 8 9 10 n

µn(4) ≤ 6 16 45 126 357 1016 2907 8350 24068 ≈
√

3
2

3n+1

√
πn

µn(4) ≥ 6 16 45 120 336 938 2688 7680 21120 ≈ 3
4

3n+1

√
πnIn table [Gor94, p. 148℄, Goryunov listed Chmutov's old hypersurfaes (se-tion 3.8 on page 38) as the previously known best lower bounds although the gen-eralization of Chmutov's new onstrution (setion 4.1 on page 45) leads to greaternumbers of nodes for small n. But also in omparison to these, Goryunov's examplesare better for all n.



50 4. RECENT RESULTS (1991 UNTIL NOW)4.5. Barth's Iosahedral-Symmetri Surfaes and µA1
(6) = 65Similar to his onstrution of the 31-nodal quinti in P3, Barth also used theidea to analyze a penil of symmetri surfaes to treat the ase of degree six andten [Bar96℄. The main advantage of these two ases is the fat that one an usean even larger symmetry group than in the ase of the �ve-gon-symmetry for thequinti: Barth's surfaes of degree 6 and 10 are invariant under the symmetry groupof the iosahedron in eulidean three-spae R3 whih ontains the dihedral group

D5 as a subgroup.Let τ := 1
2 (1 +

√
5). The six planes through the origin whih are orthogonalto the six diagonals of the regular iosahedron are given by the a�ne equation

P := (τ2x2 − y2)(τ2y2 − z2)(τ2z2 − x2). Consider the family
Fα := P − α·Q2,where Q := x2 + y2 + z2 − 1 is a sphere and α ∈ C is a parameter still to bedetermined (ompare Rohn's onstrution in setion 1.3 on page 16).For generi values of α 6= 0, the surfae Fα has 45 singularities. 30 of these omefrom the intersetion of P and Q as in Rohn's onstrution, 15 are at in�nity. Barththen enfored a third orbit of 20 singularities on the ten lines joining two oppositenters of faes of the iosahedron. Beause of the symmetry he ould restrit theomputations to one of these lines whih led to α = 1

4 (2τ + 1). Altogether, heobtained a surfae Bar65 := F 1
4
(2τ+1)with 30 + 15 + 20 = 65 nodes (see �g. 4.2).A similar onstrution gave a surfae Bar345 of degree 10 with 345 nodes (seealso �g. 4.2). Its equation is as follows:(4.14) 8(x2 − τ 4y2)(y2 − τ 4z2)(z2 − τ 4x2)

“

x4 + y4 + z4 − 2(x2y2 + y2z2 + z2x2)
”

+(3 + 5τ )(x2 + y2 + z2
− 1)2

“

x2 + y2 + z2
− (2 − τ )

”2

= 0.Taking into aount both surfaes we have the new lower bounds:(4.15) µA1
(6) ≥ 65, µA1

(10) ≥ 345.

Figure 4.2. Barth's 65-nodal sexti and 345-nodal deti.As already mentioned in setion 3.5 on page 34, the existene of the 65-nodalsexti was even more astonishing in view of Catanese's and Ceresa's laimed upperbound for surfaes onstruted using B. Segre's 8-fold overing method. In fat,



4.6. DEFORMATIONS OF NODAL HYPERSURFACES 51as one an see from the equations, Barth's sexti is of this type, but exeeds thisbound. And indeed, by analyzing his onstrution arefully, Barth was able to traedown the error in Catanese's and Ceresa's reasoning.An interesting fat was omputed by van Straten using deformation theoryand omputer algebra (see next setion): The Barth sexti is ontained in a three-parameter family of 65-nodal sextis. Furthermore, van Straten suggested to tryto onstrut this family expliitly using Gallarati's onstrution (setion 2.5 onpage 24). This was done by Pettersen in his Ph.D. thesis [Pet98℄.Only very shortly after Barth's disovery of the 65-nodal sexti, Ja�e andRuberman [JR97℄ were able to show µA1
(6) ≤ 65 using arguments similar toBeauville's (setion 3.3 on page 33) whih �nally showed:(4.16) µA1

(6) = 65.After the appearane of this result in degree six, Endraÿ onsidered even sets ofnodes and their odes related to it in more generalality, see [End98, End99℄. Butthis did not allow him to dedue new upper bounds for higher degrees.4.6. Deformations of Nodal HypersurfaesVan Straten's omputation of the fat that Barth's 65-nodal sexti varies in athree-parameter family is an appliation of his deformation theory for nodal hyper-surfaes in Pn whih he developped in a still un�nished paper [vS94℄. His theory isbased on the deformation theory for non-isolated singularities whih he developpedin [dJvS90℄ together with de Jong.Van Straten onsidered the a�ne one over the singular lous Σ := Σ(X) ofthe nodal hypersurfae X whih is given by a homogenous polynomial X ∈ P :=
C[x0, . . . , xn] of degree d. This allowed him to apply the above deformation the-ory of non-isolated singularities. The deformation funtor Def(X, Σ) onsists ofdeformations of the projetive hypersurfae X whih indue analytially trivial de-formations of the multigerm of X around Σ. T 1(X, Σ) is the spae of in�nitesimaldeformations and T 2(X, Σ) the obstrution spae.We get for the in�nitesimal embedded deformations T 1(X) = (P/J)d, where
J := Ja(X) := ( ∂X

∂x0
, . . . , ∂X

∂xn
) denotes the jaobian ideal of X . For the in�nitesimaldeformations of the multigerm (X, Σ), we have: T 1(O(X,Σ)) = ⊕x∈ΣT 1(OX,x). As

Σ is redued in our ase, van Straten ould apply some vanishing results whih makea long exat sequene from [dJvS90℄ ollaps to:
0 → T 1(X, Σ) → T 1(X) → T 1(O(X,Σ)) → T 2(X, Σ) → 0.We denote the saturation of J w.r.t. m := (x0, . . . , xn) by I := J : m

∞. Van Stratenargued that the above sequene is isomorphi to the degree d part of the sequeneof graded P -modules:
0 → H0

m
(P/J) → P/J → P/I → H1

m
(P/J) → 0.This immediately yields:

dimT 1(X, Σ) − dimT 2(X, Σ) = dim(P/J)d −
∑

x∈Σ

τ(X, x)

=

(
n + d

d

)
− (n + 1)2 − #(nodes(X)).

(4.17)



52 4. RECENT RESULTS (1991 UNTIL NOW)As H0
m

(P/J) = I/J , we get from the above exat sequenes:(4.18) T 1(X, Σ) = (I/J)d.We an thus ompute dimT 1(X, Σ) using omputer algebra and � via (4.17) �also dimT 2(X, Σ) whih represents the number of independent onditions imposedon a polynomial of degree d to pass through the nodes Σ.As an example, let us onsider the ase of nodal sextis f6. It is known that
#(nodes(f6)) ≤ 65 as we have seen in the previous setion. As dimT 2(f6, Σ) ≥ 0,we obtain: dimT 1(f6, Σ) ≥ 68 − 65 = 3. Indeed, using Singular we an omputevia (4.18) that dimT 1(Bar65, Σ) = 3 and thus dimT 2(Bar65, Σ) = 0 for Barth's
65-nodal sexti Bar65 (setion 4.5 on page 50).Let us mention some other immediate onsequenes of the linear relation (4.17)between dim T 1(X, Σ) and dimT 2(X, Σ):Corollary 4.1. With the notations above, we have:(1) If there exists a rigid nodal septi f7 in P3 (i.e. dimT 1(f7, Σ(f7)) = 0)then it has exatly 104 nodes and dimT 2(f7, Σ(f7)) = 0.(2) If we have dim T 2(fd, Σ(fd)) ≤ c for some nodal hypersurfae fd of degree

d in Pn for some c ∈ N0 then
#(nodes(fd)) ≤ dim(P/J)d + c =

(
n + d

d

)
− (n + 1)2 + c.(3) In partiular, the number of nodes of an unobstruted nodal hypersurfae

fd of degree d in Pn is bounded by:
#(nodes(f)) ≤

(
n + d

d

)
− (n + 1)2.In hapter 10 on page 119, we list dimT 1(fd, Σ(fd)) and dimT 2(fd, Σ(fd)) formany nodal hypersurfaes fd of degree d in Pn. From these omputations, wean observe many interesting things. E.g., the 168-nodal oti presented in thefollowing setion is the only known rigid oti although the restrition from theorollary allows the existene of 149-nodal rigid otis. Why?If dimT 2(X, Σ) = 0 for some nodal hypersurfae X then any loal deformationan be globalized to X . Thus, the existene of a nodal hypersurfae X implies theexistene of hypersurfaes with any non-negative number ≤ #(nodes(X)) of nodes.4.7. Endraÿ's 168-nodal OtisBarth's onstrution of the 65-nodal sexti and the 345-nodal deti showed thatRohn's and B. Segre's onstrutions were even more powerful than the geometershad thought before. So, Barth's Ph.D. student Endraÿ onsidered surfaes of degree

8 whih arise in the same way. The main result of his thesis [End97, End96℄ wasthe onstrution of on oti with 168 nodes.He started with a D8-invariant 9-parameter family F := P − Q of surfaes ofdegree 8, where(4.19) P :=
∏7

j=0

(
cos

(
πj
4

)
x + sin

(
πj
4

)
y − w

)

= 1
4 (x2 − w2)(y2 − w2)

(
(x + y)2 − 2w2

) (
(x − y)2 − 2w2

)
,

Q := a(x2 + y2)2 + (x2 + y2)(bz2 + czw + dw2)

+ez4 + fz3w + gz2w2 + hzw3 + iw4.



4.8. YANG'S LIST OF RATIONAL DOUBLE POINTS ON QUARTICS 53
Figure 4.3. One of the two 168-nodal Endraÿ Otis.For a generi hoie of the parameters a, b, . . . , i ∈ C, this has (

8
2

)
· 4 = 112 nodes(ompare Rohn's onstrution, setion 1.3). For the analysis of the family, Endraÿould restrit to two planes beause of the symmetry of the onstrution. Aftera areful analysis of the urves in these planes, he �nally found the parameters

a = −4(1 +
√

2), b = 8(2 +
√

2), c = 0, d = 2(2 + 7
√

2), e = −16, f = 0,
g = 8(1 − 2

√
2), h = 0, i = −(1 + 12

√
2) whih lead to on oti Endr168 with 168nodes:(4.20) µA1

(8) ≥ 168.In fat, by replaing every √
2 by −

√
2 Endraÿ got another 168-nodal oti Endr′168whih is not projetively isomorphi to the �rst one.Van Straten omputed, again using deformation theory (setion 4.6), that thisoti is rigid. In fat, this is still the only rigid nodal oti and also the rigid nodalsurfae of the smallest degree known up to now. Van Straten also found an otiwith many nodes within the above family; his example has 165 nodes.4.8. Yang's List of Rational Double Points on QuartisThe lassi�ation of all ubi surfaes with respet to the singularities our-ring on them was already found in the 19th entury (see setion 1.1 on page 13 and[BW79℄ for a modern treatment). Although the greatest number of singularities ona quarti surfae was also already determined at that time by Kummer, the lassi�-ation of all quarti surfaes with respet to their singularities was only ompletedin 1997 by Yang [Yan97℄.In a series of papers in the 1980's, Urabe had started to try to lassify allquarti surfaes in P3. He had sueeded in the ase of non-normal quarti surfaes[Ura86a℄. Urabe had also performed the major steps for quarti surfaes with atleast one singularity whih is not a rational double point, see [Ura85, Ura86b,Deg90℄. For the only remaining ase of quartis with only rational double points,Urabe had managed to redue the problem to a purely lattie-theoreti problem[Ura87, Ura90℄.Using Urabe's results together with some K3 lattie theory due to Nikulin[Nik80℄, Yang was �nally able to determine all possible ombinations of rationaldouble points on a quarti surfaes mainly by applying Nikulin's method system-atially using a omputer [Yan97℄. This ompleted the lassi�ation of all quartisurfaes with respet to the singularities ourring on them more than one-hundredyears after the same had been done for ubi surfaes.



54 4. RECENT RESULTS (1991 UNTIL NOW)To give some examples, the result shows that µ3
A2

(4) = 8, i.e. the maximumnumber of usps on a quarti is eight. µ3
A2

(4) ≤ 8 already follows from Varhenko'sbound, but to our knowledge, the other inequality µ3
A2

(4) ≥ 8 had not been knownpreviously. Shortly afterwards, Barth obtained the same result by another method[Bar00b℄ � he also gave expliit equations for 8-uspidal quartis in P3.Another interesting extremal ase is the highest Aj-singularity that an ouron a quarti. Either from Varhenko's spetral bound or via Nikulin's K3 lattietheory it follows that there annot be suh a singularity for j > 19. From Nikulin'sresults, one an show in an abstrat way that a quarti with an A19 exists (e.g., bylooking at Yang's list). But it is even possible to write down an expliit formula.This was already done in 1982 by Kato and Naruki [KN82℄, basially using expliitmethods similar to those whih had allowed Shlä�i to onstrut a ubi surfaewith an A5-singularity whih we mentioned at the end of setion 1.1.1 togetherwith results of [BW79℄:(4.21) 16(x2 + y
2) + 32xz

2
− 16y

3 + 16z
4
− 32yz

3 + 8(2x
2
− 2xy + 5y

2)z2

+ 8(2x
3
− 5x

2
y − 6xy

2
− 7y

3)z + 20x
4 + 44x

3
y + 65x

2
y
2 + 40xy

3 + 41y
4 = 0.4.9. Sarti's 600-nodal DodetiThe main result of Sarti's thesis (she is another Ph.D. student of Barth) wasthe onstrution of a surfae of degree 12 with 600 nodes, see [Sar01℄. This surfaeis also invariant under a large symmetry group, namely the re�etion group of theregular four-dimensional 600-ell. In fat, Goryunov had already announed theexistene of a 600-nodal surfae invariant under this group in 1996. But he had notbeen able to give expliit equations beause the equations of the invariant S12 ofdegree 12 had not been known at that time.This and the other invariants of the group of the 600-ell were found by Sartiin her Ph.D. thesis. We refer to [Sar01, p. 438℄ for the very lengthy equation of

S12. Given this, she studied the penilSa12(λ) : S12(x, y, z, w) + λ(x2 + y2 + z2 + w2)6and found the parameters λ ∈ C, s.t. Sa12(λ) admits singularities. It turned outthat Sa12(λ) has orbits of nodes of lengths 300, 600, 360, 60 for λ = − 3
32 , − 22

243 ,
− 2

25 , 0, respetively and no other singularities. Thus, Sa12(− 22
243 ) is a surfae in P3with 600 nodes, see �g. 4.4 on the next page:(4.22) µA1

(12) ≥ 600.In an unpublished preprint, Stagnaro [Sta01℄ onstruted a surfae of degree
12 with 584 nodes only very shortly before the publiation of Sarti's 600-nodalexample. Stagnaro's onstrution was therefore never published.Until this point, the following was known on µ(d):

d 5 6 7 8 9 10 11 12 d

µ(d)(µA1
(d)) ≤ 31 68 (65) 104 174 246 360 480 645 ≈ 4

9d3

µA1
(d) ≥ 31 65 93 168 216 345 425 600 ≈ 5

12d3
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Figure 4.4. The 600-nodal Sarti Dodeti.4.10. Surfaes in P3 with Triple PointsWe already mentioned in setion 3.1.3 on page 32 that the maximum numberof ordinary triple points on a quinti in P3 was already shown to be 5 by Gallarati[Gal52b℄. But for higher degree not muh was known until 2000. In partiular, forthe next smallest degree, six, it was unknown if there existed a sexti with 11 triplepoints.Reall that we denote by µ3(d) the maximum number of ordinary triple pointson a surfae of degree d in P3. µ3(6) ≤ 11 an easily be omputed using Varhenko'sbound. The authors of [EPS03℄ also found another bound, the so-alled polarbound whih is bad for high degree d, but for d = 6 it gives µ3(6) ≤ 10. Thispolar bound is based on the fat that the position of the triple points of a surfaein P3 annot be too speial. In fat, the authors of [EPS03℄ showed that if Fd isa surfae of degree d with many triple points and Vδ is another surfae of degree

δ then Vδ annot ontain more than 1
6δd(d − 1) of the triple points of Fd, ountedwith multipliities. As they were also able to show the existene of a sexti with

10 triple points, they ould onlude that the maximum number of triple points onsuh a surfae was known:
µ3(6) = 10.The authors were not able to lassify all sextis with 10 triple points; this lassi�-ation was ompleted by one of them in [Ste03℄.For degree d ≥ 8, the best known upper bound for µ3(d) is Wahl's generaliza-tion [Wah94℄ of Miyaoka's bound (setion 3.10 on page 40) whih the authors of[EPS03℄ also omputed:

µ3(d) ≤ 2

27
d(d − 1)2, d ≥ 7.For d = 7, Varhenko's bound is still better and omputes to 17. The authors werenot able to reah this bound, but they gave a one-parameter family of septis with

16 triple points, see �g. 4.5 on the following page.In a reent artile [Sta04℄, Stagnaro used again a variant of B. Segre's seondonstrution (setion 2.4) to get a surfae of degree 9 with 39 triple points (upperbound: 42). 4.11. Barth's Surfaes with many CuspsAfter having studied surfaes with many nodes in the early 1990's, Barth startedto look at surfaes with many usps (i.e. A2-singularities) in the late 1990's. Hisaim was not only to �nd lower bounds for the maximum number of usps, but also
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Figure 4.5. A Septi with 16 ordinary triple points.to desribe the odes onneted to them: Similar to the ode over F2 assoiated toan even set of nodes, one an onstrut a ode over F3 to a three-divisible set ofusps.Barth showed in [Bar00b℄ that a quarti in P3 annot ontain more than 8usps and he also gave expliit examples whih proved the existene . As alreadymentioned, this also follows in an abstrat way from Yang's omputations, seesetion 4.8 on page 53. Barth's 8-uspidal quartis were onstruted as projetionsof 9-uspidal sexti surfaes in P4 from one of their nine usps. The one-parameterfamily Bar4(k), k 6= ±1, of quartis with 8 usps is given by:(4.23) (1 + k)3x2

0x
2
1 + 2k(1 − k2)x0x1x2x3 − (1 − k)3x2

2x
2
3

+(1 − k2)(x0 + x1 + x2 + x3)
“

(1 − k)x2x3(x0 + x1) − (1 + k)x0x1(x2 + x3)
”One of these quartis is shown in �g. 4.6.

Figure 4.6. Barth's quarti with eight usps for k = 2.In [Bar00a℄, Barth onstruted another surfae with many usps: a quintiwhih is niely onneted to the Clebsh Diagonal Cubi (equation (1.5)). Similar tothis surfae, it is Σ5-symmetri and given by a hyperplane setion of a hypersurfaein P4:(4.24) Bar15 : 5s2s3 − 12s5 = 0, s1 = 0,where sk :=
∑4

i=0 xk
i . Bar15 has A2-singularities at the 15 points in the Σ5-orbitof (1 : 1 : −1 : −1 : 0) whih shows: µA2

(5) ≥ 15. But this surfae has many otherinteresting geometrial properties. E.g., its intersetion with the Clebsh DiagonalSurfae Cle3 onsists exatly of 15 lines joining the 15 singularities in pairs, see�g. 4.7 on the next page.
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Figure 4.7. Barth's quinti with 15 usps and the same surfaetogether with the Clebsh Diagonal Cubi.For further work on uspidal surfaes of low degree and their odes, we refer to[Bar98, Tan03, BR01, BR04℄ . For a short overview on the results on urves,see setion 2.5 on page 24.4.12. Pathworking Singular VarietiesA topi that we did not touh so far for d ≥ 5 is the general question whihombinations of possibly di�erent types of singularities an our on a hypersurfaeof degree d in Pn.One of the �rst results in this diretion is ontained in Greuel's, Lossen's andShustin's joint artile [GLS98℄. They prove the existene of an α > 0, s.t. aplane urve with presribed singularities of topologial types S1, . . . , Sk exists if

µ(S1) + · · · + µ(Sk) ≤ αd2. The oe�ient α whih ourred in this su�ientriterion was later improved by one of the authors [Los99℄.Most known results on the existene of hypersurfaes in higher dimensionswith possibly di�erent presribed topologial types are mainly based on path-working theorems by Shustin [Shu98, Shu00℄. Some works using these methodsare [Wes03, SW04℄. Notie that these results are the best known ones in thisgenerality, but when restriting to hypersurfaes with only one partiular type ofsingularity then the other onstrutions presented in this survey give more singu-larities. 4.13. Hypersurfaes with high Aj-Singularities (j > d)Most onstrutions for hypersurfaes with many higher singularities only workfor degree d large enough. Most asymptoti behaviours onsidered in the previoussetions were of the type: �x a type of singularity and ask how many of them anour on hypersurfaes of degree d for d → ∞. It is also natural to ask the otherquestion: Whih singularities an our on a hypersurfae in Pn of a �xed degree
d? As already mentioned, this has been answered ompletely for d = 3 (setion 1.1)and d = 4 (setion 4.8). To our knowledge, not muh is known for degree d ≥ 5.In this setion we want to give those few onstrutions known to us whih givesingularities f with high Milnor numbers µ(f), i.e., µ(f) > d. As we ould not �ndany referene in the literature to the orresponding upper bounds we also omputethem here.One Single Isolated Singularity. Consider the polynomials(4.25) fk,l(x1, . . . , xn) := (x2 − xk

1)l + · · · + (xn − xk
n−1)

l + s·xlk
n
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d 4 5 6 7 8 9 10 11 12

j·VarAj
(d), j ≥ 2d − 1 19 44 85 146 231 344 489 670 891Table 4.1. Varhenko's upper bound for the maximum numberof Aj-singularities on a surfae in P3 of degree d as a funtion of

j for �xed d, j ≥ 2d − 1. They are all of the form od−1

j , where
od = 1

3d(2d2 + 1) are the so-alled otahedral numbers.of degree l·k with s ∈ C generi. Then it is easy to show that the hypersurfae fk,2in Pn has an A2kn−1-singularity at the origin. This is a well-known trik variantsof whih also exist for Dj-singularities (see e.g., [Wes03, p. 350℄).We already remarked that a quarti in P3 with an A19-singularity exists, andthat this is the highest possible Aj-singularity aording to Varhenko's upperbound (see setion 4.8 on Yang's list). Varhenko's bound is also exat for d = 3:the highest Aj-singularity is an A5-singularity in this ase. So we may ask: IsVarhenko's bound exat for the maximum index j s.t. there exists an Aj -singularityon a surfae of �xed degree d?Globalizing the Equation. It is easy to globalize the loal trik from thepreeding setion to to get surfaes with few Aj-singularities (i.e., j > d) in P3. Ofourse, there are natural generalizations to higher dimensions and several variantswhih produe other numbers and types of singularities:Let k, l ∈ N, k ≥ l. The surfaes(4.26) gk,l :=
(
(yl − 1) − (xk − 1)

)2
+

(
z − (yl − 1)(⌊ k

l ⌋)
)2

+ z2kof degree d = 2k have k·l singularities of type A 2k2

l
−1
.Interpretation of Varhenko's Bound VarAj
(d) as Otahedral Num-bers if j ≥ 2d − 1. In the ase j > d Varhenko's bound (setion 3.7) is usuallybetter than Miyaoka's (setion 3.10). For �xed d, these upper bounds annot bedesribed by a polynomial, but by a rational funtion. We ould not �nd a refer-ene of Varhenko's bound for the number of Aj -singularities for �xed degree in theliterature. So, let us ompute it here using the onrete expression (3.19) whih wegave on page 37. It turns out that equation (3.19) simpli�es drastially if we redueto the ase j ≥ 2d − 1. Indeed, if we write d = k(j + 1) + l) as on page 37 then

k = 0 and d = l. In this way, (3.19) redues after some easy omputations to:(4.27) VarAj
(d) =

1

2j

(
(2− 4d2)C + (4d− 1)C2 −C3

)
+

2d

3j
(d2 − 1), if j ≥ 2d− 1,where C :=

⌊
2·d·j
j+1

⌋. But C =
⌊

2·d·j
j+1

⌋
=

⌊
2d − 2·d

j+1

⌋
= 2·d − 1 if j ≥ 2·d − 1. Theprevious formula thus ollapses to:(4.28) VarAj

(d) =
1

3j
·
(
(d − 1)·(2(d − 1)2 + 1)

)
, if j ≥ 2d − 1.The �rst values of this bound are listed in table 4.1. When entering the num-bers j·VarAj

(d) in the Sloane's on-line enylopedia of integer sequenes [Slo, id:A005900℄ we learn that these are the so-alled otahedral numbers. These numbers

http://www.research.att.com/projects/OEIS?Anum=A005900


4.13. HYPERSURFACES WITH HIGH Aj-SINGULARITIES (j > d) 59are a three-dimensional variant of square numbers sqi := i2 (see �g. 4.8): just �llup the otahedron by layers of squares (see �g. 4.9). This omputes to:(4.29) od =

d∑

i=1

sqi +

d−1∑

i=1

sqi =
1

3
d(2d2 + 1).

sq1 = 1 sq2 = 22 sq3 = 32 sq4 = 42Figure 4.8. The square numbers sqi = i2.
o1 = 1 o2 = 1 + 4 + 1 = 6 o3 = 1 + 4 + 9 + 4 + 1 = 19Figure 4.9. The otahedral numbers od =

∑d
k=1 k2 +

∑d−1
k=1 k2.Do surfaes of degree d ≥ 5 with an Aod−1

-singularity exist?







Figure on the preeding pages: A 99-nodal septi, loated within a four-parameterfamily of 63-nodal surfaes using the geometry of prime �eld experiments. See[Lab03a℄ for more images and movies of algebrai surfaes.



Part 2New Construtions and Algorithms





INTRODUCTION 65IntrodutionWe give new results related to two types of onstrutions: Chmutov's onstru-tion of nodal surfaes given by polynomials in separated variables (see setion 4.1 onpage 45) and dihedral-symmetri onstrutions based on Rohn's idea (see setion 1.3on page 16).On Variants of Chmutov's Construtions. Our �rst new result (hap-ter 5 on page 67) is a variant of Chmutov's onstrution whih gives many Aj-singularities instead of nodes. Our proof of the existene of the hypersurfaes withmany Aj-singularities is based on the theory of dessins d'enfants. In most ases,our onstrution leads to new lower bounds:
µAj

(d) '
3j + 2

6j(j + 1)
d3, j ≥ 2.Important ingredients of this onstrution are ertain line arrangements in theplane whih have many ritial points with the same non-zero ritial value. Usinga relation to the theory of two-olorings of real line arrangements we are able toshow that these arrangements are asymptotially the best possible ones (hapter 6on page 79).Using Computers to Study Speial Cases. For speial ases of low degree,it is usually possible to improve general results suh as those presented in the twohapters mentioned in the previous setion. The most reent new lower boundsfor the maximum number of nodes on surfaes of a given degree were produed bystarting with some k-parameter family of suh surfaes and then using geometrialarguments to determine the parameters suh that a new reord was found.But guessing suh geometrial arguments requires a large amount of geometriintuition. And it turned out that the ases of odd degree d = 7, 9, 11, . . . are quitedi�ult to treat in that way. So, our idea was to �nd algorithms to loate inter-esting examples within the families. We present two essentially di�erent methods:elimination and primary deomposition in harateristi zero (hapter 7), or exper-iments over prime �elds and then lifting to harateristi zero (hapters 8 and 9).The latter allows us to onstrut a surfae of degree 7 in P3 with 99 nodes (hapter8) whih is the �rst ase of odd degree greater than �ve whih exeeds Chmutov'sgeneral lower bound:

99 ≤ µ(7) ≤ 104.We then desribe an algorithm whih an be performed automatially by aomputer (hapter 9). Our implementation as a Singular library alled searh-InFamilies.lib redues the onstrution of a 99-nodal septi to a 10-minute-longomputer algebra omputation. Similarly, all reords for smaller degrees d ≤ 6 anbe reprodued. When applying the algorithm to the ase d = 9 we obtain a noniwith 226 nodes whih is also a new lower bound:
226 ≤ µ(9) ≤ 246.Our algorithm is very general so that it an ertainly be applied to many otheronrete problems in algebrai geometry.



A quinti with 15 usps whih shows the idea of how to onstrut surfaes withmany Aj-singularities using Dessins d'Enfants.



CHAPTER 5Dessins d'Enfants and Surfaes with Many
Aj-SingularitiesThe best known lower bounds for surfaes of large degree d with A1-singularitiesare given by Chmutov's onstrution (setion 4.1). For higher Aj -singularitiesthe best known onstrutions are still given by a diret generalization of Rohn'sonstrution (setion 1.3), µAj

(d) ≥ 1
2d(d − 1)⌊ d

j+1⌋. For many degrees, one analso use Gallarati's already mentioned generalization of B. Segre's onstrution(setion 2.5) whih is usually better than Rohn's if it an be applied.For singularities di�erent from nodes, there exist only very few speial on-strutions whih exeed these general ones. The best known lower bounds inpartiular ases of low degree are given by Barth, see setion 4.11: µA2
(4) = 8,

15 ≤ µA2
(5) ≤ 20. In this hapter (see also [Lab05b℄) we desribe a variant ofChmutov's onstrution whih leads to the lower bound (orollary 5.7 on page 73):(5.1) µAj

(d) '
3j + 2

6j(j + 1)
d3.To our knowledge, this gives asymptotially the best known bounds for any j ≥ 2.The onstrution reahes more than ≈ 75% of the theoretial upper bound (seesetion 3.10 on page 40) in all ases. For quintis in P3, we also get an examplewith 15 usps, so the gap of 5 more possible usps remains.Table 5.1 on the following page gives an overview of our results for low j, seealso orollaries 5.7 and 5.8. We desribe a generalization of our onstrution tohigher dimensions in setion 5.6 on page 74. This leads to new lower bounds evenin the ase of nodal hypersurfaes.5.1. Chmutov's IdeaWe start with some notation: A point z0 ∈ C is a ritial point of multipliity

j ∈ N of a polynomial g ∈ C[z] in one variable if the �rst j derivatives of g vanish at
z0: g(1)(z0) = · · · = g(j)(z0) = 0. The number g(z0) is alled the ritial value of z0.A ritial point of multipliity j, j > 1, is alled a degenerate ritial point. Reallfrom setion 4.1 on page 45 that Chmutov used the following idea to onstrutsurfaes in P3 with many nodes:

• Let Pd(x, y) ∈ C[x, y] be a polynomial of degree d with few di�erent ritialvalues, all of whih are non-degenerate. By a oordinate hange, we mayassume that the two ritial values whih our most often are 0 and −1.We assume that they our ν(0) and ν(−1) times, and that ν(0) > ν(−1).
• Let Td(z) ∈ R[z] be the Thebyhev polynomial of degree d with ritialvalues −1 and +1, where −1 ours ⌊d

2⌋ times and +1 ours ⌊d−1
2 ⌋ times.67
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@

@j d 3 4 5 6 7 8 9 10 11 12 d

1 ��44 ��1616
��3131

��6565
��10493

��174168
��246216

��360345
��480425

��645600 ≈ ��4/95/12 · d3

2 ��33 ��88 ��2015
��3736

��6252
��9870

��144126
��202159

��275225
��363300 ≈ ��1/42/9 · d3

3 ��11 ��66 ��1310
��2615

��4431
��6964

��10272
��144114

��195140
��258198 ≈ ��8/4511/72 · d3

4 ��11 ��44 ��1110
��2015

��3521
��5432

��8054
��112100

��152110
��201132 ≈ ��5/367/60 · d3Table 5.1. Known upper and lower bounds for the maximumnumber µAj

(d) of singularities of type Aj , j = 1, 2, 3, 4, on a sur-fae of degree d in P3. For j ≥ 2 and d ≥ 5, the lower boundsare attained by our examples or by Gallarati's generalization ofB. Segre's idea (setion 2.5 on page 24).
• It is easy to see that the projetive surfae given by the a�ne equation(5.2) Pd(x, y) +

1

2
(Td(z) + 1) = 0has ν(0) · ⌊d

2⌋ + ν(−1) · ⌊d−1
2 ⌋ nodes.Chmutov uses for Pd(x, y) the folding polynomials FA2

d assoiated to the root system
A2 de�ned in (4.2). In the ase of degree 5 the best polynomial for this purpose is aregular �vegon R5(x, y) ∈ R[x, y] with the ritial value 1 at the origin and with theritial value −1 at the other non-singular ritial points. The onstrution abovethen gives 30 nodes, see �g. 5.1.

R5(x, y) T5(z) R5(x, y) + 1
2 (T5(z) + 1)Figure 5.1. A variant of Givental's and Chmutov's onstrution:A regular 5-gon R5(x, y), the Thebyhev polynomial T5(z) and thesurfae R5(x, y) + 1

2 (T5(z) + 1) with 10 · 2 + 5 · 2 = 30 nodes.5.2. Adaption to Higher SingularitiesTo adapt Chmutov's onstrution (5.2) to higher singularities of type Aj , wereplae the polynomials Td(z) by polynomials with degenerate ritial points.For the onstrution of a quinti surfae with many usps, we thus take againthe regular 5-gon R5(x, y) ∈ R[x, y] together with a polynomial T 2
5 (z) ∈ R[z] ofdegree 5 with the maximum number of ritial points of multipliity two. As thederivative of suh a polynomial has degree 4, the maximum number of suh ritial
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R5(x, y) T 2

5 (z) R5(x, y) + 1
2 (T 2

5 (z) + 1)Figure 5.2. The onstrution of a quinti with 15 usps.points is 4
2 = 2, see �g. 5.2. The ritial values of these two ritial points have to bedi�erent beause a horizontal line through both ritial points would interset theurve in six points ounted with multipliities. Similar to the situation for nodes in(5.2) the surfae R5(x, y) + 1

2 (T 2
5 (z) + 1) has 10·1 + 5·1 = 15 singularities of type

A2. We take surfaes in separated variables de�ned by polynomials of the form:(5.3) Chm(Gj
d) := FA2

d + Gj
d,where FA2

d (x, y) ∈ R[x, y] is the folding polynomial de�ned in (4.2) and where
Gj

d(z) ∈ C[z] is a polynomial of degree d with many ritial points of multipliity jwith ritial values −1 and +1. E.g., for j = 1, the ordinary Thebyhev polyno-mials G1
d(z) := Td(z) yield Chmutov's surfaes with many nodes. In the followingsetions, we disuss two generalizations of the ordinary Thebyhev polynomials topolynomials with ritial points of higher multipliity whih give surfaes of degree

d with many Aj-singularities, j < d.5.3. j-Belyi Polynomials via Dessins d'EnfantsThe existene of polynomials in one variable with only two di�erent ritialvalues with presribed multipliities of the ritial points an be established usingideas of Hurwitz [Hur91℄ based on Riemann's Existene Theorem. The interest inthis subjet was renewed by Grothendiek's Esquisse d'un programme (see [SL97a,SL97b℄). Nowadays, it is ommonly known under the name of Dessins d'Enfants.We will use the following proposition / de�nition whih is basially taken from[AZ98℄:Proposition/Definition 5.1.(1) A tree (i.e. a graph without yles) with a presribed yli order of theedges adjaent to eah vertex is alled a plane tree. A plane tree has anatural bioloring of the verties (blak/white). If we �x the olor of onevertex, then this bioloring is unique.(2) A polynomial in one variable with not more than two di�erent ritialvalues is alled a Belyi polynomial.(3) For a given Belyi polynomial p : C → C with ritial values c1 and c2, wede�ne the plane tree PT (p) assoiated to p to be the inverse image
p−1([c1, c2]) of the interval [c1, c2], where p−1(c1) are the blak verties,and p−1(c2) are the white verties of the tree (see �g. 5.3 on the followingpage).
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Figure 5.3. The ordinary Thebyhev polynomial T5 with tworitial points with ritial value −1 and two with ritial value
+1. The right piture shows its plane tree PT (T5). A vertex withtwo adjaent edges orresponds to a ritial point with multipliity
1, a vertex with one adjaent edge orresponds to a non-ritialpoint.(4) For any plane tree, there exists a Belyi polynomial whose ritial pointshave the multipliities given by the number of edges adjaent to the vertiesminus one and vie vera.We will need the following two trivial bounds onerning ritial points:Lemma 5.2. Let d, j ∈ N. Let g ∈ C[z] be a polynomial of degree d in onevariable with only isolated ritial points. Then:(1) The total number of di�erent ritial points of g of multipliity j does notexeed ⌊d−1

j ⌋.(2) The number of di�erent ritial points of g of multipliity j with the sameritial value does not exeed ⌊ d
j+1⌋. 2We give a speial name to polynomials reahing the �rst of these bounds:Definition 5.1. Let d, j ∈ N and let p be a Belyi polynomial of degree d. Weall p a j-Belyi polynomial if p has the maximum possible number ⌊d−1

j ⌋ ofritial points of multipliity j.Example 5.1. The ordinary Thebyhev polynomials T 1
d (z) := Td(z) are 1-Belyi polynomials. T 2

5 (z) in �g. 5.2 on the previous page is a 2-Belyi Polynomial.
2 A speial type of j-Belyi polynomials are those of degree j + 1. We will joinseveral plane trees orresponding to suh j-Belyi polynomials of degree j+1 to formlarger plane trees in the following setions:Definition 5.2. We all the plane tree orresponding to a j-Belyi polynomialof degree j + 1 a j-star. If the enter of this tree is a blak (resp. white) vertex weall it a •- (resp. ◦-) entered j-star (see �g. 5.4 on the faing page).5.4. The Polynomials T j

d (z)A natural generalization of the ordinary Thebyhev polynomials to polynomi-als Gj
d(z) with degenerate ritial points that an be used in the onstrution ofequation (5.3) on page 69 omes from the following intuitive idea: Take polynomi-als whih look similar to the ordinary Thebyhev polynomials (�g. 5.3), but whihhave higher vanishing derivatives suh that they are j-Belyi polynomials.
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d
(z) 71

T j
j+1(z) = zj+1 − 1 for j = 6. 1

2

j + 1

3 ·
·
·Figure 5.4. The polynomial T j

j+1(z) with exatly one ritialpoint z0 = 0 of multipliity j and ritial value −1 together withthe orresponding •-entered j-star.Example 5.2. A 3-Belyi polynomial of degree 13 has ⌊
13−1

3

⌋
= 4 ritial pointsof multipliity 3. The polynomial T 3

13 has two ritial points with ritial value
−1 and two with ritial value +1. The plane tree showing the existene of suh apolynomial onsists of four onneted 3-stars. To show the similarity to the ordinaryThebyhev polynomials we draw them in �g. 5.5 as four bouquets of 1-stars attahedto the plane tree in �g. 5.3 on the preeding page. A straightforward Singular[GPS01℄ sript to ompute the equation of T 3

13(z) an be found on the website[Lab03a℄. 2

j−1 verties︷ ︸︸ ︷

︸ ︷︷ ︸
k bouquets1

2 3

4 13

5 6

7

8 9

10

11 12Figure 5.5. The biolored plane tree PT (T j
d ) for the polynomial

T j
d (z) for j = 3, d = 13, k := d−1

j = 4. It onsists of k onneted
j-stars. Here, we line them up to show the similarity to the or-dinary Thebyhev polynomials in �g. 5.3 on the faing page. See[Lab03a℄ for a Singular [GPS01℄ sript to ompute the equationof T 3

13(z).Theorem/Definition 5.3. Let d, j ∈ N with d > j. There exists a polynomial
T

j
d(z) of degree d with ⌈ 1

2⌊d−1
j ⌋⌉ ritial points of multipliity j with ritial value

−1 and ⌊ 1
2⌊d−1

j ⌋⌋ suh ritial points with ritial value +1.Proof. The orresponding plane tree PT (T j
d ) an be de�ned as follows (om-pare �g. 5.5). For d = k · (j + 1), k ∈ N, we take k onneted j-stars. Fixingthe enter of the �rst j-star to be white, the plane tree has a unique bioloring. If

d = l + k · (j + 1) for some 1 ≤ l ≤ j, we attah another l-star to get a polynomialof degree d. �Although there is an expliit reursive onstrution of ordinary Thebyhevpolynomials and their generalizations to higher dimensions (the folding polynomials,see [Wit88℄), we do not know a similar expliit onstrution of the polynomials
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T j

d (z) for j ≥ 2. To our knowledge, they an only be omputed for low degree duntil now, e.g. using Groebner Basis. When plugged into the onstrution (5.3) onpage 69 the existene of the polynomials T j
d immediately implies:Corollary 5.4. Let d, j ∈ N with d > j. There exist surfaesChm(T j

d ) := FA2

d +
1

2
(T j

d + 1)of degree d with the following number of singularities of type Aj :
1
2d(d − 1)·⌈ 1

2⌊d−1
j ⌋⌉ + 1

3d(d − 3)·⌊ 1
2⌊d−1

j ⌋⌋, if d ≡ 0 mod 3,

1
2d(d − 1)·⌈ 1

2⌊d−1
j ⌋⌉ + 1

3 (d(d − 3) + 2)·⌊ 1
2⌊d−1

j ⌋⌋, otherwise. 25.5. The Polynomials M j
d(z)The j-Belyi polynomials T j

d (z) desribed in the previous setion reah the �rstbound of lemma 5.2 on page 70. The j-Belyi polynomials M j
d(z) whose existenewill be shown in this setion also ahieve the seond bound of this lemma. We startwith two examples:Example 5.3. The 2-Belyi polynomial T 2

9 (z) is the example of the smallestdegree from the previous setion that does not reah the seond bound of lemma 5.2.The plane tree PT (M2
9 (z)) in �g. 5.6 shows the existene of a 2-Belyi polynomialof degree 9 that ahieves this bound.As in the ase of the polynomials T j

d (z), it is possible to ompute the polynomials
M j

d(z) expliitly for low j and d. For our ase j = 2, d = 9 we denote by u theunique ritial point with ritial value +1 and by b0, b1, b2 the three ritial pointswith ritial value −1. When requiring b2 = 0 (i.e., M2
9 (0) = −1), M2

9 (z) has thederivative
∂M2

9

∂z
(z) = (z − b0)

2 · (z − b1)
2 · z2 · (z − u)2.Using Singular [GPS01℄, we �nd: u9 = 18 and b0 and b1 are the two distintroots of z2 − 3uz + 3u2 = 0. Notie that b0, b1 /∈ R even if we take u ∈ R. 2

(a) PT (M2
3 ) (b) PT (M2

9 ) () PT (M2
15)Figure 5.6. To obtain PT (M2

9 ) from the 2-star PT (M2
3 ) =

PT (T 2
3 ), we attah two •-entered 2-stars to one of the ◦-verties(marked by the grey bakground). The orresponding polynomial

M2
9 (z) has thus 3 ritial points of multipliity 2 with ritial value

−1 (the 3 •-entered 2-stars) and 1 suh point with ritial value
+1 (the only ◦-entered 2-star). M2

15 has �ve and two, respetively.
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d
(z) 73Example 5.4. If d 6= k ·(j +1) for some k ∈ N, the onstrution of a plane treeorresponding to a polynomial reahing both bounds of lemma 5.2 is a little moredeliate than in the previous example. The ases PT (M2

11) and PT (M2
12) in �g. 5.7illustrate this. 2

(a) PT (M2
11) (b) PT (M2

12)Figure 5.7. M2
11 and M2

12 have the same number of ritial pointsof multipliity j. M2
12 has �ve ones with ritial value −1 and onlyone ritial point with ritial value +1. M2

11 has three ritialpoints with ritial value −1 and two with ritial value +1.Theorem/Definition 5.5. Let d, j ∈ N with d > j. There exists a polynomial
M

j
d(z) of degree d with ⌊

d
j+1

⌋ ritial points of multipliity j with ritial value
−1 and (⌊

d−1
j

⌋
−

⌊
d

j+1

⌋) suh ritial points with ritial value +1.Proof. The existene of a orresponding plane tree PT (M j
d) an be shown asfollows (ompare �g. 5.6 on the preeding page). For d = j + 1 we de�ne PT (M j

d)as a •-entered j-star. For d = (j + 1) + k · j·(j + 1), k ∈ N, we attah suessivelysets of j •-entered j-stars as illustrated in �gure 5.6. If d 6= (j + 1) + k · j·(j + 1)for some k ∈ N the existene of plane trees PT (M j
d) an be shown similarly (see�g. 5.7). �The existene of the polynomials M j

d(z) has two immediate onsequenes:Corollary 5.6. The bounds in lemma 5.2 on page 70 are sharp. 2It is lear that the polynomials M j
d annot have only real oe�ients and onlyreal ritial points for d large enough. So, the same holds for the singularities ofthe surfaes of the following orollary:Corollary 5.7. Let d, j ∈ N with d > j. There exist surfaesChm(M j

d) := FA2

d + M j
dof degree d with the following number of singularities of type Aj :

1
2d(d − 1)·

⌊
d

j+1

⌋
+ 1

3d(d − 3)·
(⌊

d−1
j

⌋
−

⌊
d

j+1

⌋)
, if d ≡ 0 mod 3,

1
2d(d − 1)·

⌊
d

j+1

⌋
+ 1

3 (d(d − 3) + 2)·
(⌊

d−1
j

⌋
−

⌊
d

j+1

⌋)
, otherwise. 2



74 5. DESSINS D'ENFANTS AND SURFACES WITH MANY Aj-SINGULARITIESTo get an idea of the quality of our best lower bounds given by our examplesChm(M j
d) from orollary 5.7 on the preeding page we ompare them with thebest known upper bounds: Varhenko's spetral bound (setion 3.7 on page 35)and Miyaoka's bound (setion 3.10 on page 40). It is well-known that the latter isbetter for large d. Together with the previous orollary we get:Corollary 5.8. Let j ∈ N. For large degree d, the quotient of the num-ber of Aj-singularities on our surfaes Chm(M j

d) and the best known upper boundMiyAj
(d) is:

µAj
(Chm(M j

d))MiyAj
(d)

≈ (j + 2)(3j + 2)

4(j + 1)2
.This quotient is greater than 3

4 for all j ≥ 1, the limit for j → ∞ is also 3
4 . 25.6. Generalization to Higher DimensionsIt is possible to generalize the onstrution of surfaes with manyAj -singularitiesdesribed in the previous setions to Pn, n ≥ 4. It turns out that for n ≥ 5, thefolding polynomials FA2

d (x, y) are no longer the best hoie: Even for nodal hyper-surfaes, the folding polynomials FB2

d (x, y) lead to better lower bounds.5.6.1. Nodal Hypersurfaes in Pn, n ≥ 4. In setion 4.1 on page 45 weexplained how Chmutov idea to use the folding polynomials FA2

d (x, y) assoiatedto the root system A2 an be generalized to obtain nodal hypersurfaes in higherdimensions. We an improve the asymptoti behaviour of the lower bound slightlyby using a folding polynomial assoiated to another root system. Suh polynomialswere desribed in [Wit88℄, and their ritial points were studied in [Bre05℄ anal-ogous to the ase of A2 treated by Chmutov in [Chm92℄ (see also setion 4.1). Itturns out that the folding polynomials FB2

d (x, y) assoiated to the root system B2are best suited for our purposes. They an be de�ned reursively as follows:
FB2

0 := 1, FB2

1 :=
1

4
y, FB2

2 :=
1

4
y2 − 1

2
(x2 − 2y − 4) − 1,

FB2

3 :=
1

4
y3 − 3

4
y(x2 − 2y − 4) − 3

4
y,(5.4) FB2

d := y
(
FB2

d−1 + FB2

d−3

)
−

(
2 + (x2 − 2y − 4)

)
FB2

d−2 − FB2

d−4.These polynomials have exatly three di�erent ritial values: −1, 0, +1. Thenumbers of ritial points of FB2

d are: (
d
2

) with ritial value 0, ⌊ (d−1)
2 ⌋⌊d

2⌋ withritial value −1. The use of these polynomials improves the asymptoti behaviour(for d large) of the best known lower bound for the maximum number of nodes onlyslightly. This is given by Chmutov's surfaes TChmn
d whih are de�ned as a sumof Thebyhev polynomials (see setion 3.8 on page 38). In fat, the oe�ient ofthe highest order term of the polynomial desribing its number of nodes does nothange (see table 5.2 on the next page). Nevertheless, we want to mention:Proposition 5.9. Let n ≥ 2, d ≥ 3. Then: µ(Chmn(FB2

d )) > µ(TChmn
d ).It is not true that the folding polynomials FA2

d and FB2

d are the best possiblehoies in all ases. Indeed, for d = 5, a regular �ve-gon leads to more nodes. For
d = 3, 4 there are better onstrutions for nodal hypersurfaes in Pn known. Infat, Kalker (setion 3.11) already notied that Varhenko's upper bound is exat
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n 3 4 5 6 7 8 9 10

1
dn ·µ(Chmn(FA2

d )) ≈ 5
12

7
18

7
24

19
72

35
144

49
216

79
432

25
144

1
dn ·µ(Chmn(FB2

d )) ≈ 1
dn ·µ(TChmn

d ) ≈ 3
23

3
23

5
24

5
24

35
27

35
27

63
28

63
28Table 5.2. The asymptoti behaviour of the number of nodeson variants of Chmutov's hypersurfaes in Pn. As Chmutov al-ready realized in [Chm92℄, the Chmn(FA2

d ) are only better for
n = 3, 4. For n ≥ 5, the best lower bounds are given by our variantChmn(FB2

d ) whih improves Chmutov's oldest examples TChmn
dslightly.for d = 3. Goryunov redisovered the same ubis by another method and alsofound quartis with many nodes in Pn (see setion 4.4).5.6.2. Hypersurfaes in Pn with Aj-Singularities, j ≥ 2, n ≥ 4. Similarto the ase of surfaes whih we disussed in the preeding setions, we an adaptthe equations for the nodal hypersurfaes to get hypersurfaes Chmj,n(FB2

d ) (orChmj,n(FA2

d ), TChmj,n
d ) with many Aj-singularities:(5.5) Chmj,n(FB2

d ) :

⌊n−3

2
⌋∑

i=0

FB2

d (x2i, x2i+1) =

{
Td(xn−2) + M j

d(xn−1), n even
− 1

2 (M j
d(xn−1) + 1), n odd.This leads to the asymptoti behaviour given in table 5.3.

n 3 4 5 6 7 8

1
dn ·µn

A2
(d) ' 2

9
13
72

1
6

13
96

55
384

15
128

1
dn ·µn

A3
(d) ' 11

72
1
8

11
96

3
32

25
256

125
1536

1
dn ·µn

A4
(d) ' 7

60
23
240

7
80

23
320

19
256

1
16

1
dn ·µ(Chmj,n(FA2

d )) ≈ 3j+2
6j(j+1)

5j+3
12j(j+1)

7j+3
18j(j+1)

7j+4
24j(j+1)

19j+16
72j(j+1)

35j+19
144j(j+1)

1
dn ·µ(Chmj,n(FB2

d )) ≈ 2j+1
4j(j+1)

3j+2
8j(j+1)

3j+2
8j(j+1)

5j+3
16j(j+1)

20j+15
64j(j+1)

35j+20
128j(j+1)Table 5.3. The asymptoti behaviour of the number of Aj-singularities on a hypersurfae of degree d in Pn. Chmj,n(FB2

d )is better than Chmj,n(FA2

d ) for n ≥ 6.Notie that we usually get fewer singularities if we add a sign (−1)i in the sumin ontrast to equation (4.7) where the alternating sign is often better beause thefolding polynomial FA2

d has other ritial values than FB2

d .Of ourse, for small d, n, j, it is often easy to write down better lower bounds.E.g., if n is even and d is small, it is often better to replae Td(xn−2)+M j
d(xn−1) bya plane urve with the maximum known number of usps. For some spei� valuesof d, j ≥ 2, n ≥ 4 there are even better lower bounds known. E.g., we already



76 5. DESSINS D'ENFANTS AND SURFACES WITH MANY Aj-SINGULARITIESmentioned in setion 1.5.3 that Lefshetz onstruted a ubi hypersurfae in P4with 5 usps whih is the maximum possible number.For n = 2, our onstrution presented in subsetion 5.6.2 on the previous pageonly leads to plane urves of degree d with ≈ 1
4 ·d2 usps whereas the generalizationof B. Segre's onstrution (equation (2.12) gives ≈ 9

32 ·d2 suh singularities whenstarting with a smooth oni.





Breske's 216-nodal real variant of Chmutov's noni.



CHAPTER 6Real Line Arrangements and Surfaes with ManyReal NodesWe make a short exursus to the world of real algebrai geometry (see also[BLvS05℄). More preisely, we onsider the relationship between the maximumpossible number µA1
(d) of nodes on a surfae of degree d and the maximum possiblenumber µR

A1
(d) of real nodes on a real surfae in P3(R). Obviously, µR

A1
(d) ≤

µA1
(d), but do we even have µR

A1
(d) = µA1

(d)? In other words: Can the maximumnumber of nodes be ahieved with real surfaes with real singularities?The previous question arises naturally beause all results in low degree d ≤ 12suggest that it ould be true (see hapter 4 on page 45 and table 6.1). In ontrastto this, until very reently, the best known asymptoti lower bound, µA1
(d) ' 5

12d3,was only reahed by Chmutov's onstrution (setion 4.1 on page 45) whih yieldssingularities with non-real oordinates. But during the writing of Breske's diplomathesis [Bre05℄ under the diretion of van Straten it turned out that the foldingpolynomials used by Chmutov an be adapted to have real ritial points. Ofourse, these give rise to variants of Chmutov's surfaes with only real nodes. Inthis hapter, we brie�y explain how this an be done. See table 6.1 on the followingpage for the lower bounds for µA1
(d) resulting from this. In the real ase we andistinguish between two types of A1-singularities, onial nodes (x2 + y2 − z2 = 0)and solitary points (x2 + y2 + z2 = 0): Breske's onstrution produes only onialnodes.Notie that in general there are no better real upper bounds for µR

A1
(d) knownthan the well-known omplex ones of Miyaoka (setion 3.10) and Varhenko (setion3.7). But for solitary points there exist better bounds via the relation to the zerothBetti number (see e.g., [Kha96℄). E.g., Rohn showed in 1913 that a real quartisurfae in P3(R) annot have more than 10 solitary points although it an have 16onial nodes. We show a real upper bound of ≈ 5

6d2 for the maximum number ofritial points on two levels of real simple line arrangements onsisting of d lines. In[Chm95℄, Chmutov onjetured this to be the maximum number for all omplexplane urves of degree d. He also notied [Chm92℄ that suh a bound diretlyimplies an upper bound for the number of real nodes of ertain surfaes. Our upperbound shows that Breske's folding polynomials are asymptotially the best possiblereal line arrangements for this purpose.6.1. Variants of Chmutov's Surfaes with Many Real NodesIn this setion, we brie�y desribe how Breske adapted Chmutov's onstrutionto get surfaes with many real nodes. Reall that the FA2

d (x, y) have ritial pointswith only three di�erent ritial values: 0, −1, and 8 (see setion 4.1 on page 45).Thus, the surfae ChmA2

d (x, y, z) is singular exatly at those points at whih the79
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d 1 2 3 4 5 6 7 8 9 10 11 12 13 d

µR

A1
(d) ≤ 0 1 4 16 31 65 104 174 246 360 480 645 832 4

9d(d − 1)2

µR

A1
(d) ≥ 0 1 4 16 31 65 99 168 216 345 425 600 732 ≈ 5

12
d3Table 6.1. Exept for d = 9, the urrently known bounds for themaximum number µA1

(d) (resp. µR

A1
(d)) of nodes on a surfae ofdegree d in P3(C) (resp. P3(R)) are equal. The bold numbers indi-ate in whih ases Breske's variants of Chmutov's surfaes improvethe previously known lower bound for µR

A1
(d).ritial values of FA2

d (x, y) and 1
2 (Td(z) + 1) sum up to zero (i.e., either both are 0or the �rst is −1 and the seond is +1).Notie that the plane urve de�ned by FA2

d (x, y) onsists in fat of d lines. Butthese are not real lines and the ritial points of this folding polynomial also havenon-real oordinates. It is natural to ask whether there is a real line arrangementwhih leads to the same number of ritial points. In her Diploma thesis, Breskeomputed the ritial points of the other folding polynomials. Among these, thereare the following examples whih are the real line arrangements we have been lookingfor (see [Bre05, p. 87�89℄):We de�ne the real folding polynomial FA2

R,d(x, y) ∈ R[x, y] assoiated to the rootsystem A2 as FA2

R,d(x, y) := FA2

d (x + iy, x − iy), where i is the imaginary number.It is easy to see that the FA2

R,d(x, y) have indeed real oe�ients. The numbers ofritial points are the same as those of FA2

d (x, y); but now they have real oordinatesas the following lemma shows:Lemma 6.1 (see [Bre05℄). The real folding polynomial FA2

R,d(x, y) assoiated tothe root system A2 has (
d
2

) real ritial points with ritial value 0 and
1

3
d2 − d, if d ≡ 0 mod 3,

1

3
d2 − d +

2

3
, otherwise(6.1)real ritial points with ritial value −1. The other ritial points also have realoordinates and have ritial value 8.Proof. We proeed similar to the ase disussed by Chmutov, see [Bre05, p.87�95℄ for details. To alulate the ritial points of the real folding polynomial

FA2

R,d, we use the map h1 : R2 → R2, de�ned by
(u, v) 7→

(
cos(2π(u+v))+cos(2πu)+cos(2πv), sin(2π(u+v))−sin(2πu)−sin(2πv)

)
.This is in fat just the real and imaginary part of the �rst omponent of the gener-alized osine h onsidered by Withers [Wit88℄ and Chmutov [Chm92℄. It is easyto see that h1 is a oordinate hange if u − v > 0, u + 2v > 0, and 2u + v < 1. Ittransforms the polynomial FA2

R,d into the funtion GA2

d : R2 → R2, de�ned by
GA2

d (u, v) := FA2

R,d(h
1(u, v)) = 2 cos(2πdu) + 2 cos(2πdv) + 2 cos(2πd(u + v)) + 2.The alulation of the ritial points of GA2

d is exatly the same as the one performedin [Chm92℄. As the funtion GA2

d has (d − 1)2 distint real ritial points in theregion de�ned by u− v > 0, u + 2v > 0, and 2u + v < 1, the images of these pointsunder the map h1 are all the ritial points of the real folding polynomial FA2

R,d of



6.2. ON TWO-COLORINGS OF REAL SIMPLE LINE ARRANGEMENTS 81degree d. In ontrast to Chmutov, we here get real ritial points beause h1 is amap from R2 into itself. �None of the other root systems yield more ritial points on two levels. Butas mentioned in setion 5.6 on page 74, the real folding polynomials assoiated tothe root system B2 give hypersurfaes in Pn, n ≥ 5, whih improve the previouslyknown lower bounds for the maximum number of nodes in higher dimensions slightly([Bre05℄ gives a detailed disussion of all these folding polynomials and their ritialpoints).
Figure 6.1. For degree d = 9 we show the Thebyhev polynomial
T9(z), the real folding polynomial FA2

R,9(x, y) assoiated to the rootsystem A2, and the surfae ChmA2

R,9(x, y, z). The bounded regionsin whih FA2

R,9(x, y) takes negative values are marked in blak.The lemma immediately gives the following variant of Chmutov's surfaes:Theorem 6.2 (see [Bre05℄). Let d ∈ N. The real projetive surfae of degree
d de�ned by(6.2) ChmA2

R,d(x, y, z) := FA2

R,d(x, y) +
1

2
(Td(z) + 1) ∈ R[x, y, z]has the following number of real nodes:(6.3) 1

12

(
5d3 − 13d2 + 12d

)
, if d ≡ 0 mod 6,

1
12

(
5d3 − 13d2 + 16d − 8

)
, if d ≡ 2, 4 mod 6,

1
12

(
5d3 − 14d2 + 13d − 4

)
, if d ≡ 1, 5 mod 6,

1
12

(
5d3 − 14d2 + 9d

)
, if d ≡ 3 mod 6.These numbers are the same as the numbers of omplex nodes of Chmutov'ssurfaes ChmA2

d (x, y, z). To our knowledge, the result gives new lower bounds forthe maximum number µR

A1
(d) of real singularities on a surfae of degree d in P3(R)for d = 9, 11 and d ≥ 13, see table 6.1 on the preeding page. Notie that all bestknown lower bounds for µR

A1
(d) are attained by surfaes with only onial nodeswhih is not astonishing in view of the upper bounds for solitary points mentionedin the introdution.6.2. On Two-Colorings of Real Simple Line ArrangementsThe real folding polynomials FA2

R,d(x, y) used in the previous setion are in fatreal simple (straight) line arrangements in R2, i.e., lines no three of whih meet ina point. Suh arrangements an be 2-olored in a natural way (see �g. 6.1): We



82 6. REAL LINE ARRANGEMENTS AND SURFACES WITH MANY REAL NODESlabel in blak those onneted omponents (ells) of R2 \ {FA2

R,d(x, y) = 0} in whih
FA2

R,d(x, y) takes negative values, the others in white. The bounded blak regions in�g. 6.1 ontain exatly one ritial point with ritial value −1 eah.Harborth has shown in [Har81℄ that the maximum number Mb(d) of blak ellsin suh real simple line arrangements of d lines satis�es:(6.4) Mb(d) ≤
{

1
3d2 + 1

3d, d odd,
1
3d2 + 1

6d, d even.

d of these ells are unbounded. This is a purely ombinatorial result whih isstrongly related to the problem of determining the maximum number of trianglesin suh arrangements whih has a long and rih history (see [GO04℄). Notiethat this bound is better than the one obtained by Kharlamov using Hodge theory[Kha05℄. It is known that the bound (6.4) is exat for in�nitely many values of d.The real folding polynomials FA2

R,d(x, y) almost ahieve this bound. Moreover, thesearrangements have the very speial property that all ritial points with a negative(resp. positive) ritial value have the same ritial value −1 (resp. +8).To translate the upper bound on the number of blak ells into an upper boundon ritial points we use the following lemma:Lemma 6.3 (see Lemme 10, 11 in [OR03℄). Let f be a real simple line arrange-ment onsisting of d ≥ 3 lines. f has exatly (
d−1
2

) bounded open ells eah of whihontains exatly one ritial point. All the ritial points of f are non-degenerate.It is easy to prove the lemma, e.g. by ounting the number of bounded ellsand by observing that eah suh ell ontains at least one ritial point. Comparingthis with the number (d− 1)2 −
(
d
2

)
=

(
d−1
2

) of all non-zero ritial points gives theresult. Now we an show that our real line arrangements are asymptotially thebest possible ones for onstruting surfaes with many singularities:Theorem 6.4. The maximum number of ritial points with the same non-zeroritial value 0 6= v ∈ R of a real simple line arrangement is bounded by Mb(d)− d,where d is the number of lines. In partiular, the maximum number of ritialpoints on two levels of suh an arrangement does not exeed (
d
2

)
+Mb(d)−d ≈ 5

6d2.Proof. In view of the upper bound (6.4) for the maximum number Mb(d) ofblak ells of a real simple line arrangement we only have to verify that any boundedell ontains only one ritial point. But this follows from the preeding lemma. �Chmutov showed a muh more general result ([Chm84℄, see [Chm95℄ for thease of non-degenerate ritial points): For a plane urve of degree d the maximumnumber of ritial points on two levels does not exeed ≈ 7
8d2. In [Chm95℄, heonjetured ≈ 5

6d2 to be the atual maximum whih is attained by the omplexline arrangements FA2

d (x, y) he used for his onstrution (and also by the real linearrangements FA2

R,d(x, y)). Thus, our theorem 6.4 is the veri�ation of Chmutov'sonjeture in the partiular ase of real simple line arrangements. As Chmutovremarked in [Chm92℄, suh an upper bound immediately implies an upper boundon the maximum number of nodes on a surfae in separated variables:Corollary 6.5. A surfae of the form p(x, y) + q(z) = 0 annot have morethan ≈ 1
2d2· 12d + 1

3d2· 12d = 5
12d3 nodes if p(x, y) is a real simple line arrangement.This number is attained by the surfaes ChmA2

R,d(x, y, z) de�ned in theorem 6.2.



6.3. CONCLUDING REMARKS 83Comparing this number with the upper bound ≈ 5
12d3 on the zeroth Bettinumber (see e.g., [Kha96, p. 533℄) one is tempted to ask if it is possible to deformour singular surfaes to get examples with many real onneted omponents. Butour surfaes ChmA2

R,d(x, y, z) only ontain A−
1 singularities whih loally look likea one (x2 + y2 − z2 = 0). When removing the singularities from the zero-set ofthe surfae every onneted omponent ontains at least three of the singularities.Thus, the zeroth Betti number of a small deformation of our surfaes are notlarger than ≈ 5

3·12d3 whih is far below the number ≈ 13
36d3 resulting from Bihan'sonstrution [Bih03℄ whih is based on Viro's pathworking method.Conversely, we may ask if it is always possible to move the lines of a simple realline arrangement in suh a way that all ritial points whih have a ritial valueof the same sign an be hosen to have the same ritial value. If this were truethen it would be possible to improve our lower bound for the maximum number

µR

A1
(d) of real nodes on a real surfae of degree d slightly beause it is known thatthe upper bounds for the maximum number Mb(d) of blak ells are in fat exatfor in�nitely many d. E.g., in the already ited artile [Har81℄, Harborth gave anexpliit arrangement of 13 straight lines whih has 1

3 ·132 + 1
3 ·13− 13 = 47 boundedblak regions. When regarding this arrangement as a polynomial of degree d = 13 ithas exatly one ritial point with a negative ritial value within eah of the blakregions. Suh a polynomial would lead to a surfae with (

13
2

)
·⌈ 13−1

2 ⌉+ 47·⌊ 13−1
2 ⌋ =

750 > 732 nodes. Similarly, suh a surfae of degree 9 would have 228 > 216 nodes.In the ase of degree 7 the onstrution would only yield 96 nodes whih is less thanthe number 99 found in [Lab04℄.6.3. Conluding RemarksNotie that it is not lear that line arrangements are the best plane urves forour purpose, and we may ask: Is it possible to exeed the number of ritial pointson two levels of the line arrangements FA2

R,d(x, y) using irreduible urves of higherdegrees? Either in the real or in the omplex ase? This is not true for the realfolding polynomials. E.g., those assoiated to the root system B2 onsist of manyellipses and yield surfaes with fewer singularities (see [Bre05℄).We an also ask for the maximum number µR

A(d) of real Aj-singularities. It islear that onstrutions similar to those in hapter 5 on page 67 annot give the samenumber of real nodes beause of the intermediate value theorem (Zwishenwertsatz).It would be nie to use real dessins d'enfants (see e.g., [Bru℄) to hek whih numbersare atually possible to obtain.



A sexti with 30 real usps and 10 real nodes at in�nity, onstruted using analgorithm in harateristi zero.



CHAPTER 7An Algorithm in Charateristi ZeroWe give an algorithm (see also [Lab05a℄) that an be used to �nd hypersurfaeswith many singularities within families of hypersurfaes. As we will see, it is basedon very reent features of the omputer algebra system Singular. The idea tosuh an algorithm is not so new. In fat, our main observation was to notie thatwe an use features of the most reent versions of this omputer algebra system toperform the algorithm on a omputer in our partiular ase.We desribe this algorithm using the example of the onstrution of a sextisurfae in P3 with 35 usps. From this, it is easy to �gure out how to proeed ingeneral. When we uploaded the preprint [Lab05a℄ to arXiv.org we believed thatthis 35-uspidal example was the one with the maximum known number of usps.Only reently we realized that Gallarati's variant of B. Segre's onstrution (seesetion 2.5 on page 24) leads to a sexti with 36 usps. We present the algorithmhere beause it an ertainly be applied in many similar situations.In the works mentioned in part 1, the authors used geometri arguments toredue a problem depending on several parameters to polynomials eah dependingonly on one parameter. The roots of these polynomials ould then easily be foundby hand or by omputer algebra. But what an we do when there are no geometriarguments available to redue the problem to equations in one variable eah? In thisase, we an still use a similar approah by replaing root-�nding of a polynomialin one variable by primary deomposition.7.1. The Family of 30-uspidal SextisAs our starting point, we take the 4-parameter family fs,t,u,v ⊂ P3 with dihedralsymmetry D5 de�ned by:(7.1) p := z · Π4
j=0

[
cos

(
2πj
7

)
x + sin

(
2πj
7

)
y − z

]

= z
16

[
x

(
x4 − 2·5·x2y2 + 5·y4

)

−5·z·
(
x2 + y2

)2
+ 4·5·z3·

(
x2 + y2

)
− 16·z5

]
,

qs,t,u,v := s·(x2 + y2) + t·z2 + u·zw + v·w2,
fs,t,u,v := p − q3

s,t,u,v.

p is the produt of z and 5 planes in P3(C) meeting in the point (0 : 0 : 0 : 1)with the symmetry D5 of the 5-gon with rotation axes {x = y = 0}. qs,t,u,v is also
D5-symmetri, beause x and y only appear as x2 + y2.The generi surfae fs,t,u,v has 15·2 = 30 singularities of type A2 at the inter-setions of the tripled quadri qs,t,u,v with the (

6
2

) pairwise intersetion lines of the
6 planes p. 2·5 = 10 of the singularities lie in the {z = 0} plane, the other 4·5 = 20not. The oordinates of the latter 20 an be obtained from the 4 singularities inthe {y = 0} plane using the symmetry of the family. To see that the {y = 0} planeontains 4 usps, note that p|y=0 = z · (z −x) · (x2 − 2xz− 4z2)2: For generi values85



86 7. AN ALGORITHM IN CHARACTERISTIC ZEROof the parameters, this doubled quadri fator meets the tripled quadri qs,t,u,v in
2 · 2 points.Note that(7.2) fs,t,u,v(x, y, z, λw) = fs,t,λu,λ2v(x, y, z, w) ∀λ ∈ C∗,s.t. we an hoose v := 1 (it is easy to see that v = 0 orresponds to a degeneratease). Therefore, we write:

fs,t,u := fs,t,u,1 and qs,t,u := qs,t,u,1.7.2. The Sextis with 35 CuspsTo �nd surfaes in this 3-parameter family with more singularities, we omputethe disriminant Discfs,t,u
∈ C[s, t, u] of the family fs,t,u by �rst dividing out thebase lous (the intersetions of the double lines of p with the quadri q) from thesingular lous (we use saturation, beause we have to divide out the base lous sixtimes):

sl :=

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z
,
∂f

∂w

)
,

bl :=

(
∂p

∂x
,
∂p

∂y
,
∂p

∂z
,

∂p

∂w
, q

)
,

I := sl : bl∞.Then we eliminate the variables x, y, z from this quotient. In fat, beause ofthe symmetry we restrit our attention to the {y = 0} plane, whih speeds up theomputations: Every singularity in the plane {y = 0} whih is not on the rotationaxes {x = y = 0} generates an orbit of length 5 of singularities of the same type.A short Singular omputation then gives the disriminantDiscfs,t,u
∈ Q[s, t, u],whih fatorizes into Discfs,t,u

= Df,1 · Df,2 · Df,3, where:
Df,1 = 220·36 · s5 ·

(
24·s2 + 22·3·st + t2

)
· (s + t)

2

+
(
−219·36

)
· s5 ·

(
2·11·s2 + 19·st + 2·t2

)
· (s + t) · u2

+216·36 · s5 ·
(
41·s2 + 2·3·7·st + 2·3·t2

)
· u4

+
(
−214·33

)
· s3

·
(
2·33·7·s3u6 + 22·33·s2tu6 + 26·52·s3 − 25·52·s2t − 52·61·st2 − 53·t3

)

+212·33 · s3 ·
(
33·s2u6 − 25·52·s2 − 2·52·61·st − 3·53·t2

)
· u2

+210·33·52 · s3 · (61·s + 3·5·t) · u4

+
(
−26·53

)
·
(
22·33·s3u6 + 26·5·23·s3 + 25·3·5·s2t + 22·3·52·st2 + 52·t3

)

+24·3·54 ·
(
25·s2 + 23·5·st + 5·t2

)
· u2

+
(
−22·3·55

)
·
(
22·s + t

)
· u4

+55 ·
(
u4 − 22·u2 + 24

)
·
(
u2 + 22

)
,

Df,2 =
(
−24

)
· t2 + 23 · t ·

(
u2 + 2

)
+

(
2·u − (u2 + 22)

)
·
(
2·u + (u2 + 22)

)
,

Df,3 = 22 · t + (2 − u) · (2 + u) .We hope that some singularities of the disriminant orrespond to examplesof surfaes fs,t,u with more A2-singularities. Note that only Df,1 depends on theparameter s. Using omputer algebra, it is easy to verify that the intersetions of



7.2. THE SEXTICS WITH 35 CUSPS 87two of the 3 omponents Df,1, Df,2, Df,3 of Discfs,t,u
do not yield to surfaes withmany additional singularities.So, we use Singular againto ompute the primary deomposition of the singularlous of Df,1 over Q: sl(Df,1) = slf,1 ∩ slf,2 ∩ slf,3 ∩ slf,4 , where

slf,1 =
(
22·

(
22·s − t

)
+ u2, 26·33·s3 − 5

)

slf,2 =
(
− 22·

(
22·3·s + 5·t

)
+ 5·u2, 24·32·s2 + 22·3·5·s + 52

)

slf,3 =
(
215·33·t6 − 214·34·t5·u2 + 211·34·5·t4·u4 − 26·33·5·t3·

(
25·u6 − 11·31

)

+24·34·5·t2·
(
23·u6 − 11·31

)
·u2 − 22·34·t·

(
24·u6 − 5·11·31

)
·u4

+
(
23·33·u12 − 33·5·11·31·u6 + 26·52·193

)
,

211·32 · t4 − 211·32 · t3 · u2 + 28·33 · t2 · u4

−22 ·
(
25·32·tu6 − 22·5·7·19·211·s − 5·73·193·t

)

+u2 ·
(
23·32·u6 − 5·73·193

))

slf,4 =
(
22·3·s − 5, −4·(t + 1) + u2

)
.All these prime ideals de�ne smooth urves in the 3-dimensional parameterspae. When projeting the urve C3 de�ned by slf,3 to the s, t- or the s, u-plane,we get in both ases six straight lines de�ned by the equation(7.3) 215·33·s6 − 26·33·5·s3 + 52 = 0.This shows that C3 onsists in fat of the union of six plane urves. Over thealgebrai extension Q(s), it is easy to ompute the equation of these:(7.4) C3,s = 5·u2 − 22·5·t − 211·32·s4 − 24·5·s ∈ Q(s)[t, u].To show that there is a surfae with 35 A2-singularities, we take the most simplepoint of this urve, the one with u = 0:Theorem 7.1 (35-uspidal Sexti). Let s0 ∈ C be one of the six roots of (7.3).Let (t0, 0) be the point on C3,s0

with u = 0. Then the sexti S35 := fs0,t0,0 ⊂ P3has exatly 35 singularities of type A2 and no other singularities.Proof. We use omputer algebra. The Singular sript and its output anbe downloaded from the webpage [Lab03a℄. Here, we give the basi ideas. With
u = 0 in C3,s0

, we �nd: t0 = −4·s0

(
27·32

5 ·s3
0 + 1

)
. For the orresponding surfae(7.5) S35 := f

s0,−4·s0

“

27·32

5
·s3

0
+1

”

,0we �rst hek that the total milnor number is 70. Then we verify that the surfaehas 35 singularities of type A2: For eah orbit of singularities, we ompute the idealof one of the singularities and hek expliitly that it is a usp. To show this itsu�es to verify that its milnor number is exatly two. E.g., for the orbit of the�ve non-generi singularities, we take the usp Syw that lies in the {y = 0} plane:
Syw =

(
−27·32

5
s3
0 + 8 : 0 : 1 : 0

)
.

�Note that the oe�ients of the surfae S35 are not real. In fat, the ideal slf,3does not ontain any real point, beause equation (7.3) does not have any real root.In partiular, it is not possible to use the software surf [End01℄ to draw an image



88 7. AN ALGORITHM IN CHARACTERISTIC ZEROof this sexti. This also holds for the more general family fs,t,u,v beause of equation(7.2). The urves de�ned by the ideals slf,2 and slf,4 lead to only one additionalhigher singularity, and we are not interested in suh examples.But in the ase of the prime ideal slf,1, we get surfaes with 30 real A2-singularities and 10 real A1-singularities (see also �g. 7.1). Again, we hoose apoint in the parameter-spae with u = 0:Theorem 7.2. The sexti fs0,t0,0 ⊂ P3, where s0 := 1
3·22

3
√

5 ∈ R, t0 = 22·s0 ∈
R, has exatly 30 singularities of type A2, 10 singularities of type A1, and no othersingularities. Furthermore, all the singularities are real.Proof. Similar to the preeding one. �

Figure 7.1. A sexti with 30 usps and 10 nodes at in�nity. Somemovies illustrating this are available from [Lab03a℄.7.3. Conluding RemarksIn our appliation, we ould restrit our attention to a plane beause of thesymmetry of the family, so that the number of variables dereased. This speeded upthe omputations. But the ase of septis with many nodes was too time-onsumingto be treated in this way: Our onstrution of a 99-nodal surfae of degree 7 (seenext hapter) involves omputations in positive harateristis and then liftings toharateristi zero using the geometry of the examples.In other appliations, it might be easy to divide out the base lous and toompute the disriminant, e.g. by using the geometry of the family. Then it onlyremaines to study the disriminant for �nding examples whih have more singular-ities than the generi member of the family.



7.4. THE SINGULAR CODE 897.4. The Singular Code"::::::: :::::";"A Sexti with $35$ Cusps";"(Oliver Labs)";"";"This Singular sript omputes the parameters s,t,u,v,";"s.t. the surfae f_{s,t,u,v} of the artile has $35$ usps.";"";"This sript also ontains the proof that this surfae has ";"$35$ suh singularities and no other singularities.";"::::::: :::::";"";LIB "primde.lib";LIB "sing.lib";LIB "lassify.lib";LIB "zeroset.lib";pro myodim(ideal stdi)"ASSUME: stdi is already in standard bases form!"{ return(nvars(basering)-dim(stdi));}pro std_primdeGTZ(ideal I)"RETURN: A list, similar to the one returned by primdeGTZ, but withsome extra information.Calls primdeGTZ and then alls std() for eah of the prime idealsreplae the prime ideals by their standard-basis.The third sub-item of eah item of the list isthe dimension of the prime ideal,the fourth sub-item is its multipliity."{ list pd = primdeGTZ(I);list pd_neu;int i;list oords;ideal stdtmp;for(i=1; i<=size(pd); i++) {stdtmp = std(pd[i℄[2℄);pd_neu[i℄ = list(pd[i℄[1℄, stdtmp, dim(stdtmp), mult(stdtmp));}return(pd_neu);}//////////////////////////////int pr = 0;



90 7. AN ALGORITHM IN CHARACTERISTIC ZERO//////////////// The ring in whih the algebrai number t is defined://ring r = pr, (x,y,z,w,s,t,u,v), dp;// The 6 planes p:poly p = z*(16*x^5-160*x^3*y^2+80*x*y^4-80*x^4*z-160*x^2*y^2*z+320*x^2*z^3-80*y^4*z+320*y^2*z^3-256*z^5)/256;// The quadri q:poly q = (s*(x^2+y^2) +t*z^2 +u*w*z +v*w^2);// The family of sextis with 30 usps:poly f = p - q^3;ideal jf = diff(f,w), diff(f,y), diff(f,z), diff(f,x);ideal jfy = substitute(jf, y,0);ideal bl = diff(p,x), diff(p,z), diff(p,w), diff(p,y), q;ideal bly = substitute(bl, y,0);"";"";"sl:";"";jfy;"";"";"bl:";"";bly;"";"";"Compute I and eliminate x and z:";"";poly disr;"";"sat...";ideal I = sat(jfy,bly)[1℄;"";"std...";I = std(I);"";"eliminate x and z...";ideal el = eliminate(I,xz);el;disr = el[1℄;"";"";"From now on we hoose v=1.";"";//map mp = r, x,y,z,w,s,t,1,v;map mp = r, x,y,z,w,s,t,u,1;disr = mp(disr);"";"";"Fatorize Dis_f:";"";fatorize(disr);"";poly mpf = mp(f);//"disr for u=1:";disr;// the onditions on the parameters that yield// additional singularities on the x=y=0 axes// (preomputed)



7.4. THE SINGULAR CODE 91poly onduv(1), onduv(2);onduv(1) = 4*v*(t+1)-u^2;onduv(2) = (u^2-4tv)^2 + 4*v*(u^2+4*v*(1-t));// for the disriminant, we do not want the// onditions onduv(i) that desribe the ases// that give a singularity on the x=y=0 axes:"";"";"Notie that the largest omponent is exatly the one that desribes";"the ases that do not give a singularity on the x=y=0 axes:";"";disr = quotient(disr,mp(onduv(1)))[1℄;disr = quotient(disr,mp(onduv(2)))[1℄;disr;"";"";"Primary deomposition of sl(D_{f,1}) (takes a few seonds):";"";if(0==1) {// The following takes a few seonds.// So, by default, we do not exeute this part of the sript.// Change 0==1 to 1==1 in the preeding if-statement// if you want this part to be exeuted.list sl_f = std_primdeGTZ(slous(disr));sl_f;} else {"skipped (preomputed).";}ideal sl_f3 = u4-68su2-8tu2+1216s2+272st+16t2,48s2u2-2496s3-192s2t+5,18432s4-5u2+80s+20t;poly els = eliminate(sl_f3, tu)[1℄;"";"The six values for s (equation (3)):";"";els;"-----";"";"Swith to the extension Q(s):";"";string els_str = string(els);"els:",els_str;ring rs = (0,s),(t,u,x,y,z,w),dp;exeute("minpoly = "+els_str+";");ideal sl_f3 = imap(r,sl_f3);sl_f3 = std(sl_f3);"";"";"equation (4):";"";sl_f3;"";"";"The value t_0(s) in the proof the $35$-uspidal sexti theorem:";"";poly p_t = subst(sl_f3[1℄, u, 0);number n_t = leadoef(- ((p_t / leadoef(p_t)) - t));n_t;"";"";"The equation of S_{35}:";"";poly f = imap(r,mpf);f = substitute(f, u,0, t,n_t);f;"-----";"";"The total milnor number:";"";ideal jf = diff(f,x), diff(f,y), diff(f,z), diff(f,w);



92 7. AN ALGORITHM IN CHARACTERISTIC ZEROjf = std(jf);"odim:", myodim(jf), ", milnor:", mult(jf);"";"";"The total milnor number on w=1:";"";poly fw = substitute(f, w,1);ideal jfw = fw, diff(fw,x), diff(fw,y), diff(fw,z);jfw = std(jfw);"odim:", myodim(jfw), ", milnor:", mult(jfw);"";"";"The total milnor number on y=0, w=0, z=1:";"";poly fyw = substitute(f, y,0, w,0, z,1);ideal jfyw = fyw, diff(fyw,x), diff(fyw,z);// first throw away the non-existent point (0:0:0:0):jfyw = sat(jfyw,xyzw)[1℄;// then ompute the total milnor number:jfyw = std(jfyw);"odim:", myodim(jfyw), ", milnor:", mult(jfyw);"";"Chek that this is exatly one point by omputing the radial:";"";ideal radjfyw = radial(jfyw);radjfyw = std(radjfyw);"odim:", myodim(radjfyw), ", milnor:", mult(radjfyw);"";"This shows that S_{yw} is an A_2 singularity.";"";"";"";"The ideal desribing the point S_{yw} in the affine z=1 hart:";"";list lSyw = primdeGTZ(jfyw);ideal ptSyw = y,w,subst(lSyw[1℄[2℄,z,1);ptSyw;"-----";"";"Chek that all the 30 other singularities are non-nodes:";"";fw = substitute(f, w,1);jfw = fw, diff(fw,x), diff(fw,y), diff(fw,z);// then ompute the total milnor number:jfw = std(jfw);"odim:", myodim(jfw), ", milnor:", mult(jfw);ideal nonnodes = fw, jfw, det(jaob(jaob(fw)));nonnodes = std(nonnodes);"odim(nonnodes):", myodim(nonnodes), ", milnor(nonnodes):", mult(nonnodes);"-----";"";"Chek that there is no singularity on y=0, z=0 and w=1:";"";ideal jfyz = fw, diff(fw,x), diff(fw,y), diff(fw,z);jfyz = substitute(jfyz, y,0, z,0);jfyz = std(jfyz);"dim:",dim(jfyz), ", milnor:", mult(jfyz);"-----";"";"Chek that all the 10 singularities on z=0, w=1 are A_2s:";"";"Compute the total milnor number:";ideal jfz = subst(jfw,z,0);jfz = std(jfz);"odim:", myodim(jfz), ", milnor:", mult(jfz);"";"Chek that there are exatly 10 singularities on z=0:";"radial...";ideal radjfz = radial(jfz);"std...";



7.4. THE SINGULAR CODE 93radjfz = std(radjfz);"odim:", myodim(radjfz), ", milnor:", mult(radjfz);"";"As all the 10 are non-nodes, they all have milnor number 2";"and are thus A_2-singularities.";"-----";"";"Chek that all the 4 singularities on y=0, w=1 are A_2s:";"";"Compute the total milnor number:";ideal jfy = subst(jfw,y,0);jfy = std(jfy);jfy;"odim:", myodim(jfy), ", milnor:", mult(jfy);"";"Chek that there are exatly 4 singularities on y=0:";"Compute the primary deomposition of jfy...";list ljfy = std_primdeGTZ(jfy,1);ljfy;"The 3rd and 4th entry are dimension and multipliity";"of the prime omponent:";"odim:", ljfy[1℄[3℄, ", milnor:", ljfy[1℄[4℄;"";"As all the 4 are non-nodes, they all have milnor number 2";"and are thus A_2-singularities.";"From the symmetry of the onstrution we thus know that";"all the 20=4*5 singularities";"whih are in the D_5-orbits of these four singularities";"are A_2-singularities.";"-----";"";"Thus the surfae S_{35} of degree 6 has exatly 35 usps";"and no other singularities.";"";"This ompletes the proof the theorem.";"";$;



A septi with 99 nodes, onstruted using the geometry over prime �elds.



CHAPTER 8Using the Geometry over Prime FieldsWe have already seen that the restritions on the maximum number µA1
(d) ofnodes on a nodal surfae of degree d known so far are as follows:degree 2 3 4 5 6 7 8 9 10 11 12 d

µA1
(d) ≥ 1 4 16 31 65 93 168 216 345 425 600 5

12d3

µA1
(d) ≤ 1 4 16 31 65 104 174 246 360 480 645 4

9d3In this hapter we show (see also [Lab04℄):(8.1) µA1
(7) ≥ µR

A1
(7) ≥ 99.The upper bound µ(7) ≤ 104 is given by Varhenko's spetrum bound (setion3.7). Notie that for d = 7 Miyaoka's bound (setion 3.10) is 112, but Givental'sbound (setion 3.6) also omputes to 104.The previously known septi with the greatest number of nodes was the exampleof Chmutov with 93 nodes (see setion 4.1 on page 45). For d ≤ 5 and theeven degrees d = 6, 8, 10, 12 there are examples exeeding Chmutov's lower bound:setions 4.5, 4.7, 4.9. These had been obtained by using some beautiful geometriarguments based on Rohn's (setion 1.3) and B. Segre's idea (setion 2.4).Here, we explain how to use the geometry of omputer algebra experiments overprime �elds to treat the ase d = 7 and to �nd the �rst surfae of odd degree greaterthan 5 that exeeds Chmutov's general lower bound. Given an expliit equation of afamily of hypersurfaes, there are some other approahes for �nding those exampleswith the greatest number of nodes. We were not able to apply the tehniques whihdo not involve omputer algebra and whih were used for degree d = 6, 8, 10, 12beause for these one needs a priori some good idea on the geometry of the surfae.We neither sueeded using the omputer algebra tehniques from hapter 7 in thepresent ase beause of omputer performane restritions.Instead, we hoose a more geometri and experimental approah to study thefamily. The idea to use experiments over prime �elds was already used by otherpeople, e.g. Shreyer and Tonoli [ST02℄. But in their ase they were able to usedeformation theoretial arguments to show that their examples lift to some spe-ial Calabi-Yau threefolds in harateristi zero. In our ase, we lift the modularexamples expliitly to harateristi zero using their geometry.8.1. The FamilyInspired by many authors (see in partiular setions 1.3, 4.2, 4.5, 4.7), we lookfor septis with many nodes in P3(C) within a 7-parameter family of surfaes

Sa1,a2,...,a7
:= P − Ua1,a2,...,a795



96 8. USING THE GEOMETRY OVER PRIME FIELDSof degree 7 admitting the dihedral symmetry D7 of a 7-gon:
P := 26 · Π6

j=0

[
cos

(
2πj

7

)
x + sin

(
2πj

7

)
y − z

]

= x·
[
x6 − 3·7·x4y2 + 5·7·x2y4 − 7·y6

]

+7·z·
[(

x2 + y2
)3 − 23·z2·

(
x2 + y2

)2
+ 24·z4·

(
x2 + y2

)]
− 26·z7,

Ua1,...,a7
:= (z + a5w)

(
a1z

3 + a2z
2w + a3zw2 + a4w

3 + (a6z + a7w)(x2 + y2)
)2

.

P is the produt of 7 planes in P3(C) meeting in the point (0 : 0 : 0 : 1) andadmitting D7-symmetry with rotation axes {x = y = 0}: In fat, P is invariantunder the map y 7→ −y and P ∩ {z = z0} is a regular 7-gon for z0 6= 0. U is also
D7-symmetri, beause x and y only appear as x2 + y2.As we have already seen in setion 1.3 on Rohn's onstrution of nodal quar-tis, suh a surfae S has generially nodes at the 3 · 21 = 63 intersetions of the(
7
2

)
= 21 doubled lines of P with the doubled ubi of U . We look for parameters

a1, a2, . . . , a7, s.t. the orresponding surfae has 99 nodes.As Sa1,a2,...,a7
(x, y, z, λw) = Sa1,λa2,λ2a3,λ3a4,λa5,a6,λa7

(x, y, z, w) ∀λ ∈ C∗, wehoose a7 := 1. Moreover, experiments over prime �elds suggest that the maximumnumber of nodes on suh surfaes is 99 and that suh examples exist for a6 = 1. Aswe are mainly interested in �nding an example with 99 nodes, we restrit ourselvesto the sub-family:
S := Sa1,a2,a3,a4,a5,1,1 = P − Ua1,a2,a3,a4,a5,1,1.Some other ases, e.g. a6 = 0, also lead to 99-nodal septis (see e.g. hapter 9).8.2. Redution to the Case of Plane CurvesTo simplify the problem of loating examples with 99 nodes within our family

S, we restrit our attention to the {y = 0} -plane and searh for plane urves S|y=0(we write Sy for short) with many nodes. This is motivated by the symmetry ofthe onstrution:Lemma 8.1 (see [End96℄). A member S = Sa1,a2,a3,a4,a5,1,1 of our family ofsurfaes has only ordinary double points as singularities, if (1 : i : 0 : 0) /∈ S andthe surfae does only ontain ordinary double points as singularities in the plane
{y = 0}. If the plane septi Sy has exatly n nodes and if exatly nxy of these nodesare on the axes {x = y = 0} then the surfae S has exatly nxy +7 · (n−nxy) nodesand no other singularities. Eah singularity of Sy whih is not on {x = y = 0}gives an orbit of 7 singularities of S under the ation of the dihedral group D7.Proof. Beause of the D7-symmetry of the onstrution, we only have to showthat there are no other singularities than the laimed ones. It is easy to prove (see[End96, p. 18, or. 2.3.10℄ for details) that any isolated singularity of S whih isnot ontained in one of the orbits of the nodes of Sy would yield a non-isolatedsingularity whih intersets the plane {y = 0}. But this ontradits the assumptionthat the surfae S does only ontain ordinary double points on {y = 0}. �So, we �rst look for septi plane urves of the form Sy with many nodes, then weverify that these singularities are indeed also nodes of the surfae. Via the lemma,we are then able to onlude that the surfae has only ordinary double points. In



8.3. FINDING SOLUTIONS OVER SOME PRIME FIELDS 97order to understand the geometry of the plane septi Sy better we look at thesingularities that our for generi values of the parameters. First, we ompute:
P |y=0 = x7 + 7 · x6z − 7 · 23 · x4z3 + 7 · 24 · x2z5 − 26 · z7

=
(x − z)

24
·
(
x + (−ρ)z︸ ︷︷ ︸

=:L1

)2 ·
(
2x + (ρ2 + 4ρ)z︸ ︷︷ ︸

=:L2

)2 ·
(
2x + (−ρ2 − 2ρ + 8)z︸ ︷︷ ︸

=:L3

)2
,

U |y=0 = (z + a5w)
(
(z + w)x2 + a1z

3 + a2z
2w + a3zw2 + a4w

3

︸ ︷︷ ︸
=:C

)2
,where ρ satis�es:(8.2) ρ3 + 22ρ2 − 22ρ − 23 = 0.The three points Gij of intersetion of C with the line Li are ordinary doublepoints of the plane septi Sy = P |y=0 −U |y=0 for generi values of the parameters,s.t. we have 3 · 3 = 9 generi singularities (see �g. 8.1).

z = 0

x = 0

z = −1

L1

L2

L3

C

Sy,1

C

Figure 8.1. The three doubled lines Li and the doubled ubi Cinterset in 3 · 3 = 9 points Gij . These are the generi singularitiesof the plane septi Sy.8.3. Finding Solutions over some Prime FieldsIn the early times of omputer algebra, the software was only able to workover �nite prime �elds. It is well-known that the redution modulo a prime p of ahypersurfae has the same number and type of singularities for almost all p. So, theommon pratie in the early 1990's was to ompute this for a hopefully su�ientnumber of di�erent primes.We take the other diretion. By running over all possible parameter ombina-tions over some small prime �elds Fp using the omputer algebra system Singular[GPS01℄, we �nd some 99-nodal surfaes over these �elds: For a given set of pa-rameters a1, a2, . . . , a5, we an easily hek the atual number of nodes on theorresponding surfae using omputer algebra (see [GP02, appendix A, p. 487℄).



98 8. USING THE GEOMETRY OVER PRIME FIELDSAs indiated in the previous setion, we work in the plane {y = 0} for fasteromputations. It turns out that the greatest number of nodes on Sy is 15 over thesmall prime �elds Fp, 11 ≤ p ≤ 53: See table 8.1 on the faing page. The prime�elds Fp, 2 ≤ p ≤ 7, are not listed beause they are speial ases: These primesappear as oe�ients or exponents in the equation of our family. In eah of the aseswe heked, one of the 15 singular points lies on the axes {x = 0}, suh that theorresponding surfae has exatly 14 · 7 + 1 = 99 nodes and no other singularities.8.4. The Geometry of the 15-nodal septi Plane CurveTo �nd parameters a1, a2, . . . , a5 in harateristi 0 we want to use geometriproperties of the 15-nodal septi plane urve Sy. But as we do not know any suhproperty yet, we use our prime �eld examples to get some good ideas:Observation 8.2. In all our prime �eld examples of 15-nodal plane septis Sy,we have:(1) Sy splits into a line Sy,1 and a sexti Sy,6: Sy = Sy,1 · Sy,6. The planeurve Sy,6 of degree 6 has 15 − 6 = 9 singularities. Note that this prop-erty is similar to the one of the 31-nodal D5-symmetri quinti in P3(C)onstruted by W. Barth (setion 4.2 on page 47).The line and the sexti have some interesting geometri properties (see �g. 8.1 onthe preeding page and �g. 8.3 on page 102):(2) Sy,1 ∩ Sy,6 = {R, G1j1 , G2j2 , G3j3 , O1, O2}, where R is a point on the axes
{x = 0} and the Gijk

are three of the 9 generi singularities Gij of Sy,one on eah line Li, and O1, O2 are some other points that neither lie on
{x = 0}, nor on one of the Li.(3) The sexti Sy,6 has the six generi singularities Gij , (i, j) ∈ {1, 2, 3}2 \
{(1, j1), (2, j2), (3, j3)}, and three exeptional singularities: E1, E2, E3.In many prime �eld experiments, we have furthermore:(4) In the projetive x, z, w-plane, the point R has the oordinates (0 : −1 : 1),s.t. the line Sy,1 has the form Sy,1 : z + t · x + w = 0 for some parameter
t (see also table 8.1 on the faing page).The other ases (R = (0 : c : 1), c 6= −1) lead to more ompliated equations andwill not be disussed here.Using this observation as a guess for our septi in harateristi 0, we obtainseveral polynomial onditions on the parameters. Using Singular to eliminatevariables, we �nd the following relation between the parameters a4 and t:(8.3) t ·

(
a4t

3 + t︸ ︷︷ ︸
=:α

)2
+ t − 1 = 0,whih an be parametrized by α: t = − 1

1+α2 , a4 = (α(1+α2)−1)(1+α2)2. Furthereliminations allow us to express all the other parameters in terms of α:
• a1 = α7 + 7α5 − α4 + 7α3 − 2α2 − 7α − 1,
• a2 = (α2 + 1)(3α5 + 14α3 − 3α2 + 7α − 3),
• a3 = (α2 + 1)2(3α3 + 7α − 3),

• a5 = − α2

1+α2 .



8.5. THE 1-PARAMETER FAMILY OF PLANE SEXTICS 99Field a1 a2 a3 a4 a5 Sy,1 α

F11 2 3 5 2 -5 z = x − w α = −3

F19 -7 -2 7 1 8 z = 8x − w α = 7
F19 2 0 1 9 7 z = 9x − w α = −4
F19 5 -9 7 -3 -1 z = 2x − w α = −3

F23 -5 11 10 1 7 z = −9x − w α = −2

F31 -15 -13 -5 13 -10 z = −2x − w α = −13
F31 1 -2 14 -9 11 z = 15x − w α = −11
F31 14 -10 -13 -14 -11 z = −13x − w α = −7

F43 -11 15 0 -13 -6 z = −6x − w α = 7
F43 20 16 -1 -14 10 z = −12x − w α = 14
F43 -9 3 -3 -11 5 z = 18x − w α = −21

F53 -8 20 14 18 11 z = 25x − w α = 4
F53 -2 -10 -14 -26 16 z = −9x − w α = 24
F53 10 25 -4 22 25 z = −16x − w α = 25Table 8.1. A few examples of parameters giving 15-nodal sep-ti plane urves (and 99-nodal surfaes) over prime �elds (see[Lab03a℄ for more exhaustive tables).8.5. The 1-parameter Family of Plane SextisOne more we use our expliit examples of 15-nodal septi plane urves overprime �elds to �nally be able to write down a ondition for α in harateristi 0.First, note that we an now easily obtain the equation of Sy,6 by dividing theequation of our septi urve Sy by the equation of the line Sy,1 = z + tx + w =

z − 1
1+α2 x + w. Sy,6 is a sexti whih has 6 nodes for generi α, but should have 9double points for some speial values of α. One idea to determine these partiularvalues is to �nd a geometri relation between the 6 generi singular points and the

3 exeptional ones.8.5.1. Three Conis. Looking at the equations desribing the singular pointsof our examples of 9-nodal sextis Sy,6 over the prime �elds, we see the following:Observation 8.3. For all our 9-nodal examples of plane sextis over prime�elds, there are three onis through six of these points eah (see �g. 8.2 on the nextpage):(1) one oni C0 through the 6 generi singularities,(2) one oni C1 through the 3 exeptional singularities and 3 of the generiones,(3) one oni C2 through the 3 exeptional singularities and the other 3 generiones.Moreover, the three onis have the following properties over the prime �elds:(4) C1 has the form:(8.4) C1 : x2 + kz2 + (k + 4)zw = 0,
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z = 0

x = 0

z = −1

C0

C1

C2

E1

E2

E3

C2

C1

C0

Figure 8.2. Three onis relating the 9 double points of the sexti
Sy,6. E1, E2, and E3 (blak) are the exeptional singularities (i.e.they do not lie on one of the lines Li, see �g. 8.1 on page 97).The white points are the generi singularities, oming from theintersetion of the doubled ubi C with the three doubled lines
Li.where k is a still unknown parameter. In partiular, C1 is symmetri withrespet to x 7→ −x and ontains the point (0 : 0 : 1).(5) C0 intersets the other two onis on the {x = 0} -axes (see �g. 8.2):(8.5) X1 := C0 ∩ C1 ∩ {x = 0}, X2 := C0 ∩ C2 ∩ {x = 0}.To determine the new parameter k in equation (8.4), we will use (8.5). Weompute the two points of C0 on the {x = 0} -axes expliitly using Singular:First, the ideal Igen

Sy,6
desribing the six generi singularities of Sy,6 an be omputedfrom the ideal Igen

Sy
:= (C, L1L2L3) desribing the 9 generi singularities of Sy byalulating the following ideal quotient: Igen

Sy,6
= Igen

Sy
: Sy,1. Now, the equation of

C0 an be obtained by taking the degree-2-part of the ideal Igen
Sy,6

:(8.6) αx2 + (α3 + 5α − 1)xz + (α3 + α − 1)xw
C0 : (α5 + 6α3 − α2 + α − 1)z2 + (2α5 + 8α3 − 2α2 + 6α − 2)zw

+(α5 + 2α3 − α2 + α − 1)w2 = 0.Thus, {P+, P−} := C0 ∩ {x = 0} =
{(

0 : −2(α3+3α−1)(1+α2)±β(α)
2(α5+6α3−α2+α−1) : 1

)}
, where(8.7) β(α)2 := (α3 + 3α − 1)2(1 + α2)2

−4(α5 + 6α3 − α2 + α − 1)(1 + α2)(α3 + α − 1).

C1 intersets the {x = 0} -axes in exatly two points: (0 : 0 : 1) and X1.Hene, we an determine the two possibilities for the parameter k ∈ Q(α, β(α)) inequation (8.4) for C1: Together with the z and w-oordinates of the points P±,
C1 ∩ {x = 0} = {kz2 + kzw + 4zw = 0} leads to the following two possibilities:(8.8) C1 : x2 +

−4P±
z

P±
z (P±

z + 1)
z(z + w) + 4zw = 0.



8.6. THE EQUATION OF THE 99-NODAL SEPTIC 1018.5.2. The Condition on α. The equations of the onis C0 and C1 willallow us to ompute the ondition on α, s.t. the sexti Sy,6 has 9 singularities, usingthe following (see observation 8.3 and �g. 8.2):
• C0 intersets the three doubled lines Li exatly in the six generi singu-larities.
• C1 intersets the three doubled lines Li exatly in three of these six generisingularities and the origin (whih ounts three times).Thus, the set of z-oordinates of the three points (C1 ∩ L1L2L3) \ {(0 : 0 : 1)}has to be ontained in the set of z-oordinates of the six points C0 ∩L1L2L3. Thismeans that the remainder q of the following division (resx denotes the resultantwith respet to x)(8.9) resx(C0, L1L2L3) = p(z) ·

(
1

z3
· resx(C1, L1L2L3)

)
+ q(z)should vanish: q = 0.As the degree of the remainder is deg(q) = 2, this gives 3 onditions on α and

β(α), oming from the fat that all the 3 oe�ients of q(z) have to vanish. It turnsout that it su�es to take one of these, the oe�ient of z2, whih an be writtenin the form c(α) + β(α)d(α), where c(α) and d(α) are polynomials in Q[α]. As aondition on α only we an take:
cond(α) :=

(
c(α) + β(α)d(α)

)
·
(
c(α) − β(α)d(α)

)
∈ Q[α],whih is of degree 150.This ondition cond(α) vanishes for those α for whih the orresponding surfaehas 99 nodes and for several other α. To obtain a ondition whih exatly desribesthose α we are looking for, we fatorize cond(α) = f1 ·f2 · · · fk (e.g., using Singularagain). Substituting in eah of these fators our solutions over the prime �elds, wesee that the only fator that vanishes is: 7α3 + 7α + 1 = 0.8.6. The Equation of the 99-nodal SeptiUp to this point, it is still only a guess � veri�ed over some prime �elds � thatthe values α satisfying the ondition above give 99-nodal septis in harateristi 0.But it turns out that we have indeed:Theorem 8.4 (99-nodal Septi). Let α ∈ C satisfy:(8.10) 7α3 + 7α + 1 = 0.Then the surfae Sα in P3(C) of degree 7 with equation S99 := Sα := P − Uα hasexatly 99 ordinary double points and no other singularities, where

P := x·
[
x6 − 3·7·x4y2 + 5·7·x2y4 − 7·y6

]

+7·z·
[(

x2 + y2
)3 − 23·z2·

(
x2 + y2

)2
+ 24·z4·

(
x2 + y2

)]
− 26·z7,

Uα := (z + a5w)
(
(z + w)(x2 + y2) + a1z

3 + a2z
2w + a3zw2 + a4w

3
)2

,

a1 := − 12
7 α2 − 384

49 α − 8
7 , a2 := − 32

7 α2 + 24
49α − 4,

a3 := −4α2 + 24
49α − 4, a4 := − 8

7α2 + 8
49α − 8

7 ,

a5 := 49α2 − 7α + 50.
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z = 0

x = 0

z = −1

Sy,1

E1

E2

E3

Sy,6

R

Figure 8.3. The 15-nodal plane septi SyαR
= Sy,1αR

·Sy,6αR

(see(8.11) on page 102); the singularities of the sexti Sy,6αR

are markedby large irles: The three exeptional singularities E1, E2, E3 aremarked in blak, the generi singularities in white. The �ve left-most nodes are real isolated ones. Only �ve of the six intersetionsof the line Sy,1αR

and the sexti Sy,6αR

are visible beause we justshow a small part of the whole (x, z)-plane.There is exatly one real solution αR ∈ R to the ondition (8.10),(8.11) αR ≈ −0.14010685,and all the singularities of SαR
are also real.Proof. By omputer algebra. The total tjurina number (i.e., 99) of Sα an beomputed as follows:ring r = (0, alpha), (x, y, w, z), dp; minpoly = 7*alpha^3 + 7*alpha + 1;poly S_alpha = ...;ideal sl = jaob(S_alpha); option(redSB); sl = std(sl);degree(sl); // gives: proj. dim: 0, mult: 99Using the hessian riterion, we an hek in a similar way that the singularitiesare all nodes:matrix mHess = jaob(jaob(S)); ideal nonnodes = minor(mHess,2), sl;nonnodes = std(nonnodes); degree(nonnodes); // gives: proj. dim: -1See [Lab03a℄ for the omplete Singular ode and for more information whihmay help you to verify the result by hand. Using the geometri desription of thesingularities of the plane septi given in the previous setions, it is straightforwardto verify the reality assertion (see �g. 8.4 for a visualization).

�8.7. Further RemarksThe existene of the real αR allows us to use our tool surfex [HLM05℄ toompute an image of the 99-nodal septi SαR
(�g. 8.4 on the faing page). When
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Figure 8.4. A part of the a�ne hart w = 1 of the real septiwith 99 nodes, see [Lab03a℄ for more images and movies.denoting the maximum number of real singularities a septi in P3(R) an have by
µR(7), we get, with the remarks mentioned in the introdution:Corollary 8.5.

99 ≤ µR(7) ≤ µ(7) ≤ 104.Note that the previously known lower bound, 93, was reahed by S. V. Chmu-tov's surfae (setion 4.1). It an be omputed using deformation theory and Sin-gular (see setion 4.6 on page 51) that the spae of obstrutions for globalizing allloal deformations is zero. We thus obtain:Corollary 8.6. There exist surfaes of degree 7 in P3(R) with exatly k realnodes and no other singularities for k = 0, 1, 2, . . . , 99.Reently, there has been some interest in surfaes that do exist over some �nite�elds, but whih are not liftable to harateristi 0. The redution of our 99-nodalsepti Sα modulo 5 (note: 1 ∈ F5 satis�es (8.10): 7·13 + 7·1 + 1 ≡ 0 modulo 5)neither gives a 99-nodal surfae nor a highly degenerated one as one might expetbeause the exponent 5 appears several times in the de�ning equation. Instead, wean easily verify the following using omputer algebra:Corollary 8.7. For α5 := 1 ∈ F5 the surfae Sα5
⊂ P3(F5) de�ned as in theabove theorem has 100 nodes and no other singularities.Of ourse, not all the oordinates of its singularities are in F5, but in somealgebrai extension. The septi has similar geometri properties as our 99-nodalsurfae; in addition it has one node at the intersetion of the {x = y = 0} axes and

{w = 0}. Until now, we were not able to determine if this 100-nodal septi de�nedover F5 an be lifted to harateristi zero.



104 8. USING THE GEOMETRY OVER PRIME FIELDS8.8. A ConjetureWe hope to be able to apply our tehnique for �nding surfaes with manynodes within families of surfaes to similar problems. E.g., it should be possible toonstrut surfaes with dihedral symmetry of degree 9 and 11 with many ordinarydouble points. In fat, our experiments over prime �elds suggest the followingonjeture whih is already established for d = 3, 5, 7 (see �gure 8.5 on the faingpage whih illustrates the geometry of the plane urve Sy):Conjeture 8.8. For any odd d ≥ 3, there exists a surfae S of degree d with
1
8 ·

(
3d3 − 4d2 − 7d + 8

) nodes with the following geometri properties:(1) S has dihedral symmetry Dd and is onstruted based on Rohn's idea (se-tion 1.3): S = P − (z + a0w) · (S d−1

2

)2, where P is a produt of d planes
P = Πd−1

j=0

[
cos

(
2πj

d

)
x + sin

(
2πj

d

)
y − z

]and S d−1

2

is a surfae of degree d−1
2 .(2) The plane urve Sy := S∩{y = 0} fators into a line and a urve of degree

d − 1: Sy = Sy,1 · Sy,d−1.(3) Sy has d−1
2 +

(
d−1
2

)2
+ 1

2
d−1
2

(
d−1
2 − 1

) nodes.(4) Exatly one of the nodes of Sy, say R, lies on the rotation axes {x = y = 0}of the dihedral operation. In fat, R is the intersetion of the line Sy,1 withthe rotation axes {x = y = 0}.(5) The generi surfae from Rohn's onstrution has nodes at the intersetionof the (
d
2

)
= d ·

(
d−1
2

) intersetion lines of the d planes de�ned by P withthe surfae S d−1

2

of degree d−1
2 . Beause of the dihedral symmetry of theonstrution 1

d · d ·
(

d−1
2

)2 of the nodes of the plane septi Sy ome fromthis general onstrution.For d ≤ 11, the number of nodes onjetured above exeeds Chmutov's lowerbound for the maximum number of nodes on a surfae of degree d (setion 4.1). Butfor d ≥ 13, Chmutov's examples have more nodes. Thus, if the onjeture annotbe improved then it does only yield very few new lower bounds: µA1
(9) ≥ 226 and

µA1
(11) ≥ 430.
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Sy,1Figure 8.5. The geometry of the onjetured plane urve Sy.



The {y = 0} plane setion of the a�ne hart w = 1 of a 226-nodal noni over F61.It an be found and lifted to harateristi zero using an algorithm for loatinginteresting examples within families of algebrai varieties.



CHAPTER 9Loating Interesting Examples within FamiliesSuppose we have a k-parameter family of algebrai varieties Va1,a2,...,ak
de�nedover some algebrai extension K := Q(α) of Q in whih we hope to exist a partiu-larly interesting example.Suppose furthermore that there exists an algorithm whih allows us to detetusing omputer algebra if a variety Va1,a2,...,ak

is interesting for given values of theparameters a1, a2, . . . , ak. Then the algorithm whih we desribe in this hapter andwhih we implemented as the Singular [GPS01℄ library searhInFamilies.liballows us to loate these examples in many ases.As we have seen in the preeding hapters, all surfaes of degree d ≤ 8 withthe greatest known number of nodes an be onstruted by loating them withinfamilies with dihedral symmetry. Furthermore, we have already seen that for a givensurfae it is easy to ompute its number of nodes using omputer algebra. Thus,the problem of �nding surfaes with many nodes is exatly of the type desribed inthe previous paragraph.And indeed, we will see in the following setions that the onstrution of allknown surfaes of degree d ≤ 7 whih lead to the best known lower bounds for themaximum number µA1
(d) of nodes an be redued to a omputer algebra alulation.Moreover, we apply the method to the ase of degree d = 9 whih leads to a newlower bound:(9.1) µA1

(9) ≥ 226.Reall that we have seen in the �rst part of this Ph.D. thesis and in hapter 8 thatthe restritions on µA1
(d) known before the present hapter are as follows:degree 2 3 4 5 6 7 8 9 10 11 12 d

µA1
(d) ≥ 1 4 16 31 65 99 168 216 345 425 600 5

12d3

µA1
(d) ≤ 1 4 16 31 65 104 174 246 360 480 645 4

9d3Thus, in degree d = 9 there remains a gap of 20 nodes between our onstrutionwhih leads to 226 nodes and the best known upper bound 246.9.1. Some Introdutory ExamplesIn the previous hapter, we used the geometry of the prime �eld examples toobtain a onjeture for some restritions on the parameters. We ould then verifythem by simply omputing the number of nodes of the resulting surfae.The proess of �guring out the needed geometri properties of the prime �eldexamples involved reative human interation. Here, we use a purely arithmeti wayto lift the prime �eld examples whih an be performed automatially. Nevertheless,geometri insight an speed up the algorithm signi�antly.107



108 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIES�eld β µ(vS1:β)

F2 � �
F3 � �
F5 1 205
F5 −1 205

F7 1 130

F11 1 130

F13 1 130

F17 1 130Table 9.1. Examples of vS(1:β) over some prime �elds whih haveat least 130 ordinary double points.The examples whih we present in this setion illustrate the basi ideas behindour method.9.1.1. Van Straten's 130-nodal Quinti in P4. Let us look for exampleswith many isolated singularities within van Straten's two-parameter family (seesetion 4.3 on page 48)vS(α:β) := α·σ5(x0, . . . , x5) + β·σ2(x0, . . . , x5)·σ3(x0, . . . , x5)of hypersurfaes of degree 5 in the P4 ut out by x5 = −(x1 + x2 + · · · + x4). It islear that the orresponding hypersurfae has a non-isolated singularity if α = 0,so let us normalize to α := 1. This leaves us with a one-parameter family vS(1:β).Running through all possible parameters β over the prime �elds F2,F3, . . . ,F19,we �nd the examples with at least 130 ordinary double points listed in table 9.1.The whole omputation takes approximately two minutes on our omputer.From this table, it is easy to guess that vS(1:1) is indeed a 130-nodal quintiin P4 in harateristi zero. This guess an now be veri�ed, again using omputeralgebra. Notie that the redution modulo �ve gives a 205-nodal quinti in P4 whihannot exist in harateristi zero beause of Varhenko's upper bound whih is 135nodes (see setion 3.7).9.1.2. Barth's 65-nodal Sexti in P3. Let us ompute the parameters forwhih Barth's one-parameter family of 45-nodal sextis Fα = P − α·Q2 has ex-atly 65 nodes (see setion 4.5 on page 50). The Singular sript whih omputestable 9.2 on the next page only runs for a few seonds.It is easy to guess from the table that α has to satisfy some quadrati ondition.For eah prime for whih there exist exatly two solutions we ompute the moniquadrati polynomial with the two values of α as roots. These moni quadratipolynomials over the prime �elds are not di�ult to lift by lifting eah oe�ient tosome rational number. This an be done using Wang's rational reovery algorithm[Wan81℄ or one of its variants (see e.g., [CE95℄, [Mon04℄):Algorithm 1 (Wang's algorithm).Input: A modulus M ∈ Z and a residue U ∈ Z/(M).



9.1. SOME INTRODUCTORY EXAMPLES 109�eld α polynomial µ(Fα)

F2 � � �
F3 � � �
F5 −2 α + 2 65

F7 � � �
F11 5, −4 α2 − α + 2 65

F13 � � �
F17 � � �

�eld α polynomial µ(Fα)

F19 3, −2 α2 − α − 6 65

F23 � � �
F29 5, −4 α2 − α + 9 65

F31 −1, 2 α2 − α − 2 65

F37 � � �
F41 −13, 14 α2 − α − 18 65

F43 � � �Table 9.2. Examples of Fα over some prime �elds whih have atleast 65 ordinary double points.Output: A pair (A, B) of integers s.t. A ≡ BU mod M and |A|, B <
√

1
2Mwith B > 0 if suh a pair exists. Otherwise, return NIL.1 (A1, A2) := (M, U); (V1, V2) := (0, 1);2 loop3 if |V2| ≥

√
1
2M then return NIL;4 if A2 <

√
1
2M then return (sign(V2)A2, |V2|);5 Q := ⌊A1

A2
⌋; (A1, V1) := (A1, V1) − Q(A2, V2);6 swap(A1, A2); swap(V1, V2);Of ourse, Wang's algorithm only works �ne if the modulus M is big enough.Thus, in our situation we �rst have to use the hinese remainder theorem on allour prime �eld examples to be able to apply the rational reovery algorithm. Thisimmediately yields:

α2 − α − 1

16
= 0.Again, it is easy to verify using omputer algebra that this is indeed the orretparameter.9.1.3. A Reduible Case. To illustrate a problem whih may our beauseof di�erent algebrai numbers we onsider the ideal I = ((x2− 1

2 )·(x2− 1
3 ), y− 1

7 ) ⊂
Q[x, y]. Table 9.3 on the following page lists all Fp-rational points of I (i.e. points of
I with oordinates in Fp) over some small prime �elds Fp. Of ourse, the existeneof suh points is related to the existene of square roots of two and three in these�elds.It may happen that the prime �eld experiments take too muh time, so that wedo not have enough primes p for whih the maximum number of Fp-rational pointsexists. E.g., in our example we found only one prime, namely 23, for whih all fourpoints are Fp-rational. Suh a problem does not exist in the ase in whih we arein the omfortable position to be able to produe as many prime �eld examplesas we wish. These ases are not very di�ult, in partiular if we already know inadvane whih primes have good redution and whih not (see [ABKR00℄): takea redued Groebner basis of the ideal de�ning the points and lift the oe�ients



110 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIES
p 1√

2
1√
3

1
7 ideal #11 �, � 2, −2 −3 y + 3, xy + 3x + 2y − 5, x2 − 4 213 �, � 3, −3 2 y − 2, xy − 2x + 3y − 6, x2 + 4 217 3, −3 �, � 5 y − 5, xy − 5x + 3y + 2, x2 + 8 219 �, � �, � −8 1 023 9, −9 −10, 10 10 y − 10, xy − 10x− 10y + 8, x4 + 3x2 + 4 429 �, � �, � −4 1 031 4, −4 �, � 9 y − 9, xy − 9x + 4y − 5, x2 + 15 237 �, � −5, 5 16 y − 16, xy − 16x − 5y + 6, x2 + 12 241 12, −12 �, � 6 y − 6, xy − 6x − 12y − 10, x2 + 20 243 �, � �, � −6 1 0Table 9.3. For some prime �elds Fp we show all Fp-rational pointsof the ideal I =

(
(x2 − 1

2 )·(x2 − 1
3 ), y − 1

7

). The olumn �#� liststhe number of these points and the olumn �ideal� shows a reduedGroebner basis of the ideal desribing them.using Wang's rational reovery algorithm. But in our appliations, the bottle nekof the algorithm are the experiments and we usually annot produe many moreprime �eld examples in short time.To solve the problem we simply hoose only subsets of all primes whih leadto the seond most number of Fp-rational points. In our example, the maximumnumber of Fp-rational points is 4 and the seond most is 2. As 4
2 = 2, at least halfof the ases in whih there are exatly two Fp-rational points have to ome fromthe same fator ((x2 − 1

2 ) or (x2 − 1
3 )) of the reduible polynomial of I.There are six primes, 11, 13, 17, 31, 37, 41, with exatly two Fp-rational points.Thus, for all (

6
6/2

)
=

(
6
3

)
= 20 ombinations of three of these primes we try to lifttheir ideals in the same way as for the 65-nodal sexti. E.g., for the set of primes

{11, 13, 37} Wang's rational reovery algorithm already produes the guess x2 − 1
3 ,

y − 1
7 . This guess an then be veri�ed over the rational numbers using omputeralgebra. 9.2. The AlgorithmWe now desribe the algorithm in the general situation. All main ideas arealready ontained in the examples presented in the previous setion. The purposeof the algorithm an be formulated as follows:



9.2. THE ALGORITHM 111Algorithm 2. (sketh)Input: • An ideal F ⊂ K[a1, . . . , ak, x0, x1, . . . , xn] where the ai are on-sidered as parameters. For onrete values ai of the parameters ai,this yields an ideal Fa1,...,ak
⊂ K[x0, x1, . . . , xn].

• A proedure hekInterest(ideal I) whih heks over �nite �elds
K = Fp, p prime, if a given ideal I := Fa1,...,ak

is interesting.
• A proedure hekResult(ideal F, ideal ondsPars) whih heksin an algebrai extension of Q if a guessed solution is really interest-ing.
• Both proedures have to be ompatible in the obvious sense.Output: If an interesting variety exists: an ideal in K[a1, . . . , ak] de�ningparameters a1, a2, . . . , ak s.t. Fa1,a2,...,ak

is interesting in the sense de�nedby the spei�ed proedure.Remark 9.1. • For the algorithm to work as desribed below, we haveto assume that the set of solutions is zero-dimesional. But as we are onlyinterested in �nding one example, this is no real restrition.
• In our ases, I = Fa1,...,ak

⊂ K[x0, x1, . . . , xn] is just a single polyno-mial desibing a hypersurfae in Pn, and hekInterest(ideal I) sim-ply veri�es that the number of singularities of this hypersurfae over a �nite�eld is high. The proedure hekResult(ideal F, ideal ondsPars)is very similar, but it works in harateristi zero.
• We implemented a prototype version of this algorithm as a pre-version ofthe Singular [GPS01℄ library searhInFamilies.lib. It is availablefrom [Lab03a℄ together with some example �les related to this artile.Our algorithm onsists of several steps:Step 1: Prime Field Experiments. We run through all possible parameterombinations over some small prime �elds Fp1

,Fp2
, . . . ,Fpm

and use the proedurehekInterest to pik the interesting parameter vetors. These possible ombina-tions may be restrited by giving a list of onditions.If the original equation of the surfae is de�ned over some algebrai extension
K := Q(α) of Q then we simply add α to the list of parameters and add its minimalpolynomial to the list of onditions on the parameters.Example 9.1. In our appliation, the prodedue hekInterest will simplyompute the number of singularities of the given surfae and return true if it is thenumber we have been looking for or false if not.Step 2: The Ideals over the Prime Fields. For eah prime p ∈ {p1, . . . , pm}we view the interesting parameter vetors as points in the parameter spae andompute the ideal Ip desribing all points by interseting the point ideals. Wethen ompute a redued Groebner basis of the Ip to make the ourring monomialsunique.In order to be able to lift the ideals to harateristi zero we �rst have to �gureout whih of the modular ideals ome from the same ideal in harateristi zero. Todo this, we sort the ideals Ipi

�rst w.r.t. the number of interesting parameter pointsthey de�ne and seond w.r.t. the monomials whih our in the ideal. We pik theset SI with the greatest number of prime �eld ideals with the same monomials.



112 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIESStep 3: Lifting the Ideal. Then we lift eah oe�ient ourring in theredued Groebner basis of the ideals in SI using Wang's rational reovery algorithm.As indiated in the example of setion 9.1.3 on page 109 this might lead to someproblems and require some more omputations if di�erent algebrai numbers areinvolved. Suh a situation an only our if the variety in the parameter spae isreduible.If all the oe�ients ourring in the ideal an be lifted to harateristi zerothen we proeed with the next step.If not then we go bak to the �rst step and perform some new experiments. Ifwe have already obtained partial results then we may use these in order to speedup the omputations.Step 4: Cheking the Guess. Using the proedure hekInterest againwe now verify the guess whih the lifting proess has produed. If it is not yet theorret one then we go bak to the �rst step and perform some more experiments.9.3. Dihedral-symmetri Surfaes of Degree d ≤ 6 with Many NodesAs indiated in the introdution to this hapter, the algorithm desribed in theprevious setions redues the onstrution of surfaes of degree d ≤ 6 in P3 whihhave the maximum possible number of nodes to a triviality one we had the idea tolook for dihedral-symmetri examples:Implementing a proedure hekInterest(ideal I) whih heks if the sur-fae given by I has the orret number of nodes is easy. Then it only remains towrite down the Dd-symmetri (resp. Dd−1-symmetri) families of surfaes based onRohn's onstrution (see setion 1.3).For the onrete results we do not use any further geometri intuition, althoughthis might lead to muh nier results: In this setion, we are only interested in aproof of onept, i.e. in showing that our algorithm produes the orret resultseven if we apply it in a very naive way. The omputations were performed on a 1MHz Mobile Centrino Laptop with 512 MB memory. In all examples, almost all thetime was used for the experiments. Although the equations are easy to ompute,we opied most of them together with the projetivities from [End96℄.9.3.1. A D3-symmetri 4-nodal Cubi. In degree d = 3, the family ofdihedral-symmetri surfaes based on Rohn's onstrution is
fa1,a2

3 := p − qa1,a2 ,where
p := x3 − 3xy2 + 3x2w + 3y2w − 4w3,

qa1,a2 := a1·(z − a2w))·z2.As we are only interested in projetively di�erent surfaes, we may hoose a2 := 1beause fa1,a2

3 (x, y, λz, w) = f
a1λ3,

a2
λ

3 (x, y, z, w) ∀ λ ∈ C∗ (see [End96, p. 22℄).This leaves us with a one-parameter family fa1,1
3 of three-nodal ubis.It su�es to perform the experiments for all primes p ∈ {5, 7, 11, . . . , 29}. Thewhole algorithm runs two seonds, inluding experiments, lifting and veri�ation ofthe result in harateristi zero. It �nds the 4-nodal ubi f

27
4

,1
3 .



9.3. DIHEDRAL-SYMMETRIC SURFACES OF DEGREE d ≤ 6 WITH MANY NODES 1139.3.2. A D3-symmetri 16-nodal Kummer Quarti. In degree d = 4, thefamily is
fa1,a2,a3,a4

4 := p − qa1,a2,a3,a4 ,where
p :=

1

4
·z·

(
x3 − 3xy2 + 3x2w + 3y2w − 4w3

)
,

qa1,a2,a3,a4 :=
(
a1(x

2 + y2) + a2z
2 + a3zw + a4w

2
)2

.Again, we are only interested in projetively di�erent surfaes. Thus, beause of
fa1,a2,a3,a4

4 (x, y, λ2z, w) = λ2f
a1
λ

,λ3a2,λa3,
a4
λ

4 (x, y, z, w) ∀ λ ∈ C∗ we may hoose
a1 = 1. In order to obtain only �nitely many solutions we hoose furthermore
a4 := 1. This leaves us with a two-parameter family f1,a2,a3,1

4 of 12-nodal quartis.It su�es to perform the experiments for all primes p ∈ {5, 7, 11, . . . , 29}. Thewhole algorithm runs nine seonds, inluding experiments, lifting and veri�ationof the result in harateristi zero. It �nds the 16-nodal quarti f
1,( 5

4 )
3
, −5

32
,1

4 .9.3.3. A D5-symmetri 31-nodal Togliatti Quinti. In degree d = 5, thefamily is
fa1,a2,a3,a4,a5

5 := p − qa1,a2,a3,a4,a5 ,where
p := x5 − 5(x4 + y4)w − 10x2y2(x + w) + 20(x2 + y2)w3 + 5xy4 − 16w5,

qa1,...,a5 := a1·z·
(
a2(x

2 + y2) + a3z
2 + a4zw + a5w

2
)2

.Again, we may hoose a2 := 1, a4 := 1. This leaves us with a three-parameterfamily fa1,1,a3,1,a5

5 of 20-nodal quintis.It su�es to perform the experiments for all primes p ∈ {11, 13, 17, . . . , 31}. Thewhole algorithm runs six minutes, inluding experiments, lifting and veri�ation ofthe result in harateristi zero. It �nds the 31-nodal quinti fa1,1,a3,1,a5

5 where the
ai are given by the ideal (2a1 + 5, 20a3 + a5 + 6, a2

5 + 2a5 − 4).9.3.4. A D5-symmetri 65-nodal Sexti. In degree d = 6, we take the
D5-symmetri family

fa1,a2,a3,a4,a5,a6

6 := p − qa1,a2,a3,a4,a5,a6 ,where
p := w·

(
x5 − 5(x4 + y4)w − 10x2y2(x + w) + 20(x2 + y2)w3 + 5xy4 − 16w5

)
,

qa1,...,a6 := a1·
(
(z − a2w)·(a3(x

2 + y2) + a4z
2 + a5zw + a6w

2)
)2

.In order to obtain only �nitely many solutions and as we are only interested inprojetively equivalent surfaes we may hoose a3 := 1, a4 := −1, a5 = 0. Thisleaves us with a three-parameter family fa1,a2,1,−1,0,a6

6 of 45-nodal sextis.It su�es to perform the experiments for all primes p ∈ {7, 11, 13, . . . , 39}. Thewhole algorithm runs 22 minutes, inluding experiments, lifting and veri�ation ofthe result in harateristi zero. It �nds the 65-nodal sexti f
−5

16
,0,1,−1,0,4

6 .



114 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIES9.4. Another D7-symmetri Septi with 99 NodesWithout using any reative ideas, but just by following our algorithm, we wishto reover the result µA1
(7) ≥ 99 whih we found in hapter 8 on page 95. We startagain with the 7-parameter family of all D7-symmetri septis

fa1,a2,...,a7

7 := p − qa1,...,a7 ,where
p := 26 · Π6

j=0

[
cos

(
2πj

7

)
x + sin

(
2πj

7

)
y − z

]

= x·
[
x6 − 3·7·x4y2 + 5·7·x2y4 − 7·y6

]

+7·z·
[(

x2 + y2
)3 − 23·z2·

(
x2 + y2

)2
+ 24·z4·

(
x2 + y2

)]
− 26·z7,

qa1,...,a7 := (z + a5w)
(
a1z

3 + a2z
2w + a3zw2 + a4w

3 + (a6z + a7w)(x2 + y2)
)2

.Although we may hoose a7 := 1, these are too many parameters to performa prime �eld searh over the whole family in short time. So, we have to imposesome additional onditions. Either by looking at the examples in smaller degree orby heking the geometry of some experiments over very small prime �elds, it isnatural to expet that there should exist a 99-nodal septi S s.t. the plane urve
S|y=0 fators into a line Sy,1 and a sexti Sy,6 with the property that Sy,1 passesthrough three of the generi singularities of the onstrution (see setion 8.3 onpage 97).From some prime experiments we see immediately that there is in fat a one-parameter family of suh 99-nodal surfaes. Thus we may speed up our searh byrequiring the line Sy,1 to be a speial one: Sy,1 = x + c. This su�es to produe a
99-nodal septi surfae using our algorithm as we will see below.9.4.1. Computing the onditions. It is easy to translate the restritionsabove into algebra (in the following, we use the a�ne hart w = 1):(1) The plane urve S|y=0 ∈ Q[x, z] is zero on the whole line Sy,1 = x + c,i.e. (S|y=0)|x=−c ≡ 0. As (S|y=0)|x=−c is a polynomial of degree 7 in onevariable z this gives 7+1 onditions on the parameters a1, . . . , a7 beauseeah of the oe�ients has to vanish.(2) The generi singularities are given by the intersetion of the doubled ubi

C|y=0 and the three lines L1L2L3|y=0 (i.e., this is also a ubi plane urve).The fat that the line Sy,1 = x + c passes through three of these generisingularities an be translated by simply substituting x by −c in the twoubis. When dividing eah of the two ubi polynomials (C|y=0)|x=−c ∈
Q[z] and (L1L2L3|y=0)|x=−c ∈ Q[z] by its leading oe�ient we get twopolynomials in one variable whih should be equal. Thus, we get threeonditions on the parameters a1, . . . , a7.By taking all these onditions in one ideal Iconds we see that we are left withessentially two unknown parameters beause the dimension of Iconds an easilybe omputed to be two. It turns out that we an ideed express all parameters asfuntions of two of them, namely c and a6, by omputing a lexiographial Groebner



9.5. A D9-SYMMETRIC NONIC WITH 226 NODES 115basis of Iconds:
a2
1 = −64, a2 = −1

2
a1c, a3 = −a6c

2 − 1

2
a1c

2,

a4 = −1

8
a1c

3 − c2, a5 = c, a7 = 1.9.4.2. Experimental Result. When performing our algorithm on this two-parameter family we �nd after 10 minutes:
c2 = −

(
1

7

)2

, a6 = 0.This simpli�es the expressions for the other parameters:
a1 = 56c, a2 =

4

7
, a3 =

4c

7
, a4 =

(
2

7

)3

, a5 = c, a6 = 0, a7 = 1We denote the ideal de�ning these parameters by Isol.9.4.3. Veri�ation.Theorem 9.2. The surfae Sa1,...,a7
of degree 7 has exatly 99 nodes and noother singularities if the ai ∈ Q(c) are as spei�ed by the ideal Isol in setion 9.4.2.Proof. By omputer algebra. In order not to have to ompute in an extensionof Q (whih is usually quite time-onsuming), we �rst notie that Isol de�nes exatlytwo points in the parameter spae. Thus, dividing the multipliity of the singularlous of the surfae S := Sa1,...,a7

by two gives its total milnor number. Thefollowing sequene of Singular ommands omputes this:ideal sl = diff(S,x),diff(S,y),diff(S,z),diff(S,w);I_sol = groebner(I_sol);sl = redue(sl, I_sol);"milnor:", (mult(std(sl)) div mult(I_sol));In a similar way, we an verify that these 99 singularities are indeed isolated pointsand moreover have multipliity one, i.e. they are all nodes. �9.5. A D9-symmetri Noni with 226 NodesIn exatly the same way as we onstruted the 99-nodal septi in setion 9.4on the preeding page, we an proeed to �nd a noni with many nodes. We startwith the family fa0,...,a9

9 := p − qa0,...,a9 , where
p := 26 · Π8

j=0

[
cos

(
2πj

9

)
x + sin

(
2πj

9

)
y − z

]

= x9 − 36x7y2 + 126x5y4 − 84x3y6 + 9xy8 − 9x8z − 36x6y2z − 54x4y4z

− 36x2y6z − 9y8z + 120x6z3 + 360x4y2z3 + 360x2y4z3 + 120y6z3

− 432x4z5 − 864x2y2z5 − 432y4z5 + 576x2z7 + 576y2z7 − 256z9,

qa0,...,a9 := (z + a0w) ·
(
a1z

4 + a2z
3w + a3z

2w2 + a4zw3 + a5w
4

+(a6z
2 + a7zw + a8w

2)(x2 + y2) + a9(x
2 + y2)2

)2
.We may hoose a5 := 1. After the use of the same geometrial assumptionsas in the ase of the 99-nodal septi in the preeding setion, we are left with a



116 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIESfour-parameter family. For this family the experiments take quite a lot of time,so we try to guess another parameter. It turns out that the maximum number ofnodes whih we �nd in F13 using our algorithm is 226. From these experiments weguess that there are 226-nodal nonis for a3 = 0 (similar to the result a6 = 0 forthe 99-nodal septi). This redues our problem to a searh over a three-parameterfamily. Nevertheless, the experiments take several hours. Finally, we get:Theorem 9.3. The eight surfaes S226 := fa0,...,a9

9 of degree 9 with
a2
1 = −256, a2

8 = −9a1

8
, c4 =

a1

128
, a0 = c a2 = −a1c

2
,

a3 = 0, a6 = −3a1

4
, a4 =

1

c
a7 =

a1c

4
+

1

c3
, a9 =

21a1

16and a8 = 3
2c2 have exatly 226 nodes and no other singularities.Proof. By omputer algebra. See proof of theorem 9.2. �The previously known maximum number of nodes on a noni was 216, attainedby the surfae of degree 9 from Chmutov's series (setion 4.1 on page 45). We nowhave:Corollary 9.4.

µA1
(9) ≥ 226.Of ourse, in view of the fat that the 99 nodes even exist over the real numbersit is natural to ask for the existene of a noni with 226 real nodes. In analogy tohapter 8 on page 95 we an write down a promissing family, but it has one moreparameter and we did not have enough time to perform the omputation yet.Notie that our 226-nodal noni has one additional node on the rotation axes

{x = y = 0} in F29. This is similar to the ase of septis where there exists oneadditional node on the rotation axes in F5.9.6. DisussionUnfortunately, we annot predit a priori how long the algorithm will run for agiven family, but it is lear that it has to terminate some time if we neglet hardwareand software restritions. It neither gives a proof of the non-existene of exampleswhih had not been found. Nevertheless, our algorithm has several advantages:
• The algorithm is highly parallelizable. Indeed, the bottle nek of themethod are the prime �eld experiments, and it is easy to distribute theseexperiments over several mahines.
• It produes partial results whih an be used as guesses to speed up theomputations signi�antly.Our method has ertainly many appliations in other areas of algebrai geom-etry. We only mention a few ases onneted to singularities in whih it might beuseful:
• Dihedral-symmetri surfaes of degree d = 11, 13, . . . with many nodes.
• Dihedral-symmetri surfaes with non-maximal numbers of nodes; e.g., itis not lear whih numbers of nodes may our on otis (see setion 3.13on page 43 on the defet).
• (Real) line arrangements of degree 9, 11, . . . with many ritial points ontwo levels (see hapter 6 on page 79).
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• Surfaes with many usps, in partiular quintis beause the gap betweenthe maximum known 15 and the best known upper bound 20 is very large(see setion 4.11 and hapter 5).



Barth's iosahedral-symmetri 65-nodal sexti. Shortly after its disovery in 1996,Ja�e and Ruberman showed that 65 is indeed the maximum possible number ofnodes on a sexti surfae in P3.



CHAPTER 10Tables Showing the Current State of KnowledgeThis hapter gives a tabular overview on the urrent state of knowledge onthe subjet of hypersurfaes with many singularities. In all tables, bold numbersindiate the ases in whih the present thesis improves the previously best knownbounds.At some plaes, there appear question marks. These are sometimes aused byrunning time restritions beause the omputation of the dimension of the tangentspae of the deformation funtor of the nodal hypersurfaes an take a lot of time.Another reason might be that we have simply not yet implemented the equationof the hypersurfae in Singular. Sometimes, this task is not trivial or at least ahuge amount of work beause some onstrutions are only given by vague or lengthyarguments. In some ases (e.g. Kreiss's onstrution, setion 2.6 on page 26), it iseven not lear if the onstrution really works.One we have omputed more numbers, we will plae updated tables on ourwebpage [Lab03a℄. 10.1. Nodal HypersurfaesIn P3 and P4, the best known onstrutions for large degree d are still givenby Chmutov's onstrution from 1992, see setion 4.1. For n ≥ 5 and large d, thebest known onstrution is our variant of Chmutov's onstrution based on Breske'sfolding polynomials assoiated to the root system B2, see setion 5.6.1.In the following tables, we give an overview on the urrently best known boundsfor the maximum number of nodes for small n or d. The tables do not only show thenames of the persons who disovered the hypersurfaes. We also give the referenesto the setions of this Ph.D. thesis in whih we introdued the hypersurfae and theyear in whih it was disovered.Furthermore, we give the dimensions of the spae of in�nitesimal deformationsand the obstrution spae of van Straten's deformation funtor Def(X, Σ) (see se-tion 4.6 on page 51). For shortness, we write ti for dimT 1(X, Σ(X)), i = 1, 2,throughout.10.1.1. Nodal Surfaes in P3. We start with the most important table:Nodal hypersurfaes in P3, table 10.1 on the following page. As explained in thehistorial part of this work, this subjet has a very long and rih history. The twobold numbers, 99 and 226, indiate the ases in whih the present thesis improvesthe previously known bounds.
119



120 10. TABLES SHOWING THE CURRENT STATE OF KNOWLEDGE
d µ3

A1
(d) ≤ # name, setion, and year t1 t23 4, Shlä�i: 3 Chmutov: s. 4.1, 1992 1 0s. 1.1.1, 1863 4 Shlä�i: s. 1.1.1, 1863 0 04 16, Kummer: 14 Chmutov: s. 4.1, 1992 5 0s. 1.2, 1864 16 Fresnel, Kummer: s. 1.2, 1819/64 3 05 31, Beauville: 28 Chmutov: s. 4.1, 1992 12 0s. 3.3, 1979 31 Togliatti: s. 2.1, 1940 9 06 65, Ja�e/Ruberman: 57 Chmutov: s. 4.1, 1992 11 0s. 4.5, 1997 63 Gallarati: s. 2.5, 1952 5 064 Stagnaro: s. 3.1.2, 1978 ? ?64 Catanese-Ceresa: s. 3.5, 1982 4 065 Barth: s. 4.5, 1996 3 07 104, Varhenko: 81 Chmutov: s. 3.8, 1982 23 0s. 3.7, 1983 93 Chmutov: s. 4.1, 1992 11 099 L.: s. 8.6, 2004 5 08 174, Miyaoka: 128 Endraÿ: s. 4.7, 1996 28 7s. 3.10, 1984 153 B. Segre: s. 2.4, 1952 ? ?154 Chmutov: s. 4.1, 1992 5 10160 Gallarati: s. 2.5, 1952 6 17160 Kreiss: s. 2.6, 1955 ? ?165 van Straten: unpublished, 1997 1 17168 Endraÿ: s. 4.7, 1996 0 199 246, Varhenko: 192 Chmutov: s. 3.8, 1982 23 11s. 3.7, 1983 216 Chmutov: s. 4.1, 1992 7 19226 L.: s. 9.5, 2005 ? ?10 360, Miyaoka: 321 Chmutov: s. 4.1, 1992 2 53s. 3.10, 1984 325 Kreiss: s. 2.6, 1955 ? ?345 Barth: s. 4.5, 1996 0 7511 480, Varhenko: 425 Chmutov: s. 4.1, 1992 3 80s. 3.7, 1983 430 ? L.(onjeture): s. 8.8, 2004 ? ?12 645, Miyaoka: 576 Kreiss: s. 2.6, 1955 ? ?s. 3.10, 1984 576 Chmutov: s. 4.1, 1992 2 139600 Sarti: s. 4.9, 2001 0 16113 829, Varhenko: 729 ? L.(onjeture): s. 8.8, 2004 ? ?s. 3.7, 1983 732 Chmutov: s. 4.1, 1992 ? ?14 1051, Miyaoka: 931 Kreiss: s. 2.6, 1955 ? ?s. 3.10, 1984 949 Chmutov: s. 4.1, 1992 ? ?

d ≈ 4/9d3, Miyaoka: ≈ 5
12d3 Chmutov: s. 4.1, 1992 ? ?s. 3.10, 1984Table 10.1. Nodal Hypersurfaes in P3



10.1. NODAL HYPERSURFACES 12110.1.2. Surfaes in P3 with Many Real Nodes. Exept for d = 9, theurrently known bounds for the maximum number µA1
(d) (resp. µR

A1
(d)) of nodeson a surfae of degree d in P3(C) (resp. P3(R)) are equal. The upper bounds arethe same as the omplex ones listed in the previous table: Varhenko's (setion 3.7)and Miyaoka's (setion 3.10).

d 1 2 3 4 5 6 7 8 9 10 11 12 13 d

µR

A1
(d) ≤ 0 1 4 16 31 65 104 174 246 360 480 645 832 4

9d(d − 1)2

µR

A1
(d) ≥ 0 1 4 16 31 65 99 168 216 345 425 600 732 ≈ 5

12d3Table 10.2. The urrently best known bounds on the maximumnumber of real nodes.10.1.3. Nodal Hypersurfaes in P4. Not many people have worked onnodal hypersurfaes in P4 of large degree. To our knowledge, the general onstru-tions desribed in the historial part of this thesis are the only available results for
d ≥ 6. Therefore, table 10.3 is quite short.For d = 6, 7, 8, it would ertainly be possible to apply onstrutions similar tothe one of van Straten's 130-nodal quinti, e.g. by using our algorithm from hapter9.

d µ4
A1

(d) ≤ # name, ref., and year t1 t23 10 10 Segre: s. 1.5.1, 1887 0 04 45 41 Chmutov: s. 4.1, 1992 4 045 Burkardt: s. 1.5.2, 1891 0 045 Goryunov: s. 4.4, 1994 0 05 135 120 Chmutov: s. 4.1, 1992 1 20125 Shön: s. 3.12, 1986 0 24126 Hirzebruh: s. 3.12, 1987 0 25130 van Straten: s. 4.3, 1993 0 296 320 277 Chmutov: s. 4.1, 1992 0 927 651 566 Chmutov: s. 4.1, 1992 ? ?8 1190 1029 Chmutov: s. 4.1, 1992 ? ?9 2010 1720 Chmutov: s. 4.1, 1992 ? ?10 3195 2745 Chmutov: s. 4.1, 1992 ? ?
d ? 7

18d4 Chmutov: s. 4.1, 1992 ? ?Table 10.3. Nodal Hypersurfaes in P4. The upper bounds aregiven by Varhenko's spetral bound (setion 3.7).



122 10. TABLES SHOWING THE CURRENT STATE OF KNOWLEDGE10.1.4. Nodal Hypersurfaes in P5. For nodal hypersurfaes in P5 thesituation is similar to the one in P4: there are very few (or even no) results for
d ≥ 6. But as our variants of Chmutov's onstrution lead to new lower bounds,table 10.4 shows three of these variants.Note that although our onstrution leads to a new lower bound it does notimprove the highest order term 5

16d5 of the polynomial desribing the number ofnodes. Thus, this number in the bottom row of the table is not marked in bold.But as one an see from the table, our onstrution improves the previously knownlower bounds quite a bit in small degree.
d µ5

A1
(d) ≤ # name, ref., and year t1 t23 15 15 Veneroni: s. 1.5.3, 1914 5 015 Togliatti: s. 2.1, 1936 5 04 126 40 Chmutov: s. 3.8 50 080 Chmutov: s. 3.8 20 10104 Chmutov/L.: s. 4.1, 2005 ? ?120 Goryunov: s. 4.4, 1994 0 305 456 320 Chmutov: s. 3.8 15 119392 L.: s. 5.6.1, 2005 ? ?420 Hirzebruh/L.: s. 3.12, 2005 ? ?6 1506 810 Chmutov: s. 3.8 25 4091035 Chmutov/L.: s. 4.1, 2005 ? ?1179 L.: s. 5.6.1, 2005 ? ?7 3431 2430 Chmutov: s. 3.8 ? ?2583 Chmutov/L.: s. 4.1, 2005 ? ?2781 L.: s. 5.6.1, 2005 ? ?8 7872 4320 Chmutov: s. 3.8 ? ?5488 Chmutov/L.: s. 4.1, 2005 ? ?6016 L.: s. 5.6.1, 2005 ? ?9 14412 10240 Chmutov: s. 3.8 ? ?10368 Chmutov/L.: s. 4.1, 2005 ? ?11328 L.: s. 5.6.1, 2005 ? ?10 27237 12500 Chmutov: s. 3.8 ? ?16000 Chmutov: s. 3.8 ? ?20525 L.: s. 5.6.1, 2005 ? ?

d ? 5
16d5 L.: s. 5.6.1, 2005 ? ?Table 10.4. Nodal Hypersurfaes in P5. The upper bounds aregiven by Varhenko's spetral bound (setion 3.7).



10.1. NODAL HYPERSURFACES 12310.1.5. Nodal Cubi Hypersurfaes in Pn. The nodal ubi hypersurfaesare one of the very rare ases in whih µn
A1

(d) (and even µn(d)) is known.The �rst who showed this was Kalker in his Ph.D. thesis in 1986. As explainedin setion 3.11 on page 41, he simply wrote down equations whih realize the upperbound provided by Varhenko's spetral bound (setion 3.7). Later, Goryunovobtained the same number of nodes on ubis by a di�erent method (setion 4.4).
n µn

A1
(3) ≤ # name, setion, and year t1 t23 4 4 Shlä�i: s. 1.1.1, 1863 0 04 10 10 Segre: s. 1.5.1, 1887 0 05 15 15 Veneroni: s. 1.5.3, 1914 5 015 Togliatti: s. 2.1, 1936 5 06 35 33 Givental: s. 3.9, ≈ 1982 2 035 Kalker: s. 3.11, 1986 0 035 Goryunov: s. 4.4, 1994 0 07 56 54 Givental: s. 3.9, ≈ 1982 2 056 Kalker: s. 3.11, 1986 0 056 Goryunov: s. 4.4, 1994 0 08 126 118 Givental: s. 3.9, ≈ 1982 0 34126 Kalker: s. 3.11, 1986 0 42126 Goryunov: s. 4.4, 1994 0 429 210 189 Givental: s. 3.9, ≈ 1982 3 72210 Kalker: s. 3.11, 1986 0 90210 Goryunov: s. 4.4, 1994 0 9010 462 414 Givental: s. 3.9, ≈ 1982 0 249462 Kalker: s. 3.11, 1986 0 297462 Goryunov: s. 4.4, 1994 0 297

n odd (
n+1

[(n+1)/2]

) (
n+1

[(n+1)/2]

) Kalker: s. 3.11, 1986 ? ?
n even (

n+1
[n/2]

) (
n+1
[n/2]

) Kalker: s. 3.11, 1986 ? ?Table 10.5. Cubis in Pn. The upper bounds are given byVarhenko's spetral bound, see setion 3.7 on page 35.



124 10. TABLES SHOWING THE CURRENT STATE OF KNOWLEDGE10.1.6. Nodal Quarti Hypersurfaes in Pn. Although Goryunov (setion4.4) used the same method for onstruting his quartis as for his ubis, the quartisdo not reah Varhenko's upper bound (setion 3.7).Is Goryunov's onstrution already the best possible or is it possible to produemore nodes? It would be interesting to try to answer to this question, at leastfor small n. As table 10.6 shows, already for n = 5 there is a gap of 6 betweenGoryunov's lower bound and Varhenko's upper bound.
d µn

A1
(4) ≤ # name, setion, and year t1 t23 16 16 Fresnel, Kummer: s. 1.2, 1819/64 3 04 45 24 Chmutov: s. 3.8, 1982 0 045 Burkardt: s. 1.5.2, 1891 0 05 126 40 Chmutov: s. 3.8, 1982 50 080 Chmutov: s. 3.8, 1982 20 10104 L.: s. 5.6.1, 2005 ? ?120 Goryunov: s. 4.4, 1994 0 306 357 160 Chmutov: s. 3.8, 1982 36 35300 L.: s. 5.6.1, 2005 ? ?336 Goryunov: s. 4.4, 1994 0 1757 1016 280 Chmutov: s. 3.8, 1982 63 77560 Chmutov: s. 3.8, 1982 28 322804 L.: s. 5.6.1, 2005 ? ?896 Goryunov: s. 4.4, 1994 0 630938 Goryunov: s. 4.4, 1994 ? ?8 2907 1120 Chmutov: s. 3.8, 1982 36 7422337 L.: s. 5.6.1, 2005 ? ?2688 Goryunov: s. 4.4, 1994 0 2274

n ≈
√

3
2 · 3n+1

√
πn

22n/3
(

n+1
[2n/3]+1

) Goryunov: s. 4.4, 1994 ? ?Table 10.6. Quartis in Pn. The upper bounds are given byVarhenko's spetral bound, see setion 3.7 on page 35.



10.2. HIGHER SINGULARITIES 12510.2. Higher SingularitiesNot muh is known on the maximum number of higher singularities on hyper-surfaes of degree d in Pn. Even in P3, there are only few results suh as Barth'ssurfaes with many usps (setion 4.11 on page 55).Our general onstrutions from hapter 5 on page 67 improve most known lowerbounds for the maximum number of Aj-singularities on a hypersurfae of degree din Pn, n ≥ 3, signi�antly.To our knowledge, there are almost no results for other singularities exeptvery general ones like those based on Viro's pathworking method (setion 4.12 onpage 57).10.2.1. Hypersurfaes with Aj-Singularities in P3. The projetive three-spae is still the �eld of most ative researh in the subjet of hypersurfaes withmany singularities. Our results from hapter 5 on page 67 improve most previouslyknown bounds as table 10.7 shows.Note that even the ases of j ≥ 2, d ≥ 5 whih are not marked in bold have beenoverlooked for some time. These lower bounds ome from Gallarati's generalizationof B. Segre's onstrution whih we have been working out in setion 2.5 on page 24.
@

@j d 3 4 5 6 7 8 9 10 11 12 d

1 ��44 ��1616
��3131

��6565
��10499

��174168
��246226

��360345
��480425

��645600 ≈ ��4/95/12 · d3

2 ��33 ��88 ��2015
��3736

��6252
��9870

��144126
��202159

��275225
��363300 ≈ ��1/42/9 · d3

3 ��11 ��66 ��1310
��2615

��4431
��6964

��10272
��144114

��195140
��258198 ≈ ��8/4511/72 · d3

4 ��11 ��44 ��1110
��2015

��3521
��5432

��8054
��112100

��152110
��201132 ≈ ��5/367/60 · d3Table 10.7. Known upper and lower bounds for the maximumnumber µAj

(d) of singularities of type Aj , j = 1, 2, 3, 4, on a surfaeof degree d in P3.



126 10. TABLES SHOWING THE CURRENT STATE OF KNOWLEDGE10.2.2. Hypersurfaes in Pn with Aj-Singularities, j ≥ 2, n ≥ 4. Ourresults from hapter 5 on page 67 also improve most previously known boundsin higher dimensions. In the lower two rows, table 10.8 shows the asymptotibehaviour of our two variants of the onstrution with many Aj-singularities: Oneuses Breske's folding polynomials assoiated to the root system B2, the other usesthose assoiated to the root system A2 whih Chmutov already used in the nodalase. Notie that for high degree d, Chmj,n(FB2

d ) is better than Chmj,n(FA2

d ) for
n ≥ 5 if j ≥ 2.

n 3 4 5 6 7 8

1
dn ·µn

A2
(d) ' 2

9
13
72

1
6

13
96

55
384

15
128

1
dn ·µn

A3
(d) ' 11

72
1
8

11
96

3
32

25
256

125
1536

1
dn ·µn

A4
(d) ' 7

60
23
240

7
80

23
320

19
256

1
16

1
dn ·µ(Chmj,n(FA2

d )) ≈ 3j+2

6j(j+1)
5j+3

12j(j+1)
7j+3

18j(j+1)
7j+4

24j(j+1)
19j+16

72j(j+1)
35j+19

144j(j+1)

1
dn ·µ(Chmj,n(FB2

d )) ≈ 2j+1
4j(j+1)

3j+2
8j(j+1)

3j+2

8j(j+1)
5j+3

16j(j+1)
20j+15

64j(j+1)
35j+20

128j(j+1)Table 10.8. The asymptoti behaviour of the number of Aj-singularities on a hypersurfae of degree d in Pn. Chmj,n(FB2

d )is better than Chmj,n(FA2

d ) for n ≥ 6.









Figure on the preeding pages: A ubi surfae (dark) with one A3-singularity andtwo nodes. The brighter surfae is its ovariant of degree 9 whih uts out itslines. See [LvS00℄ for more images and movies of ubi surfaes.



Part 3Visualization





INTRODUCTION 133IntrodutionIf a surfae with many singularities is de�ned over the reals then it is sometimesnie to have an image of it. But this is not the only reason why one would like tohave good visualizations of singular surfaes.In hapter 12 we show how to use our visualization tools Spiy and surfex toonstrut good equations for all 45 topologial types of real ubi surfaes with onlyrational double points. Furthermore, in many ases visualization is a very good toolto understand the geometry of some onstrutions in an intuitive way. And this anhelp to onstrut new intesting examples based on these known ones.Before that, we give a short overview of di�erent methods for visualizing alge-brai geometry ranging from lassial approahes to modern interative omputersoftware.



The swallowtail. Our Singular library surfex.lib is able to visualize this famoussurfae orretly. It ontains a real urve whih is not ontained in the real two-dimensional part of the surfae.



CHAPTER 11Methods for Visualizing Algebrai Geometry11.1. Classial ApproahesSine the early days of algebrai geometry, mathematiians visualize their ob-jets of study. Drawings by hand are easy for urves and surfaes of degree d ≤ 2. Itis even not di�ult to draw urves of higher degree when omputing many points andother important data like the oordinates of their singularities and in�exion points.Drawing images of ubi surfaes is already muh more involved. Nevertheless, theliterature of the 19th entury ontains some very good visualizations. Some people(e.g., Clebsh, Wiener, Rodenberg, and Klein) even produed real-world models ofalgebrai surfaes of low degree as we already mentioned in setion 1.1.3 on page 15.These were mostly made out of plaster or wood. Of ourse, the prodution of in-teresting surfaes of higher degree (d ≥ 5) was almost impossible beause of theiromplexity. Models of algebrai surfaes were even produed and sold for high pries(see [Sh11℄). But from the 1930's on visualization of mathematis was frownedupon for many years.11.2. The First Visualization SoftwareVisualization entered bak into the world of algebrai geometry in the mid-1980's. E.g., Fisher's book on mathematial models appeared at that time; inonnetion with this, some of the old plaster models were reprodued.Shortly afterwards, the �rst software visualization tools have been developped.Until now the one that produes the best images of singular algebrai surfaes isstill Endraÿ's surf [End01℄ the �rst version of whih he implemented during thewriting of his diploma thesis. surf is based on the raytraing method similar toPovRay. The latter is a muh more general program whih allows raytraing of anyreal-world sene. But besides the fat that we personally prefer the images produedby surf, Endraÿ's software has the advantage of being quiker. This is importantfor our appliation as we will see later. surf was even used to onstrut a modelof the Clebsh Diagonal Cubi at Fisher's university at Düsseldorf whih is a fewmeters tall (see [Kae99℄): The onstrutors used the software for drawing manyplane setions of the surfae whih served as the basis for the modelling proess.Another promissing approah to the visualization of algebrai surfaes is trian-gulation. In the smooth ase, it is not di�ult to implement a good algorithm forthis purpose. In the singular ase, the best existing software is still Morris's softwareasurf from the LSMP pakage [Mor03℄ for whih he implemented a web-frontendusing JavaView (see [Pol01℄). His program is based on heuristis and does notprodue satisfatory results in many ases. To our knowledge, reent ideas on thetriangulation of singular surfaes, e.g. by Mourrain's group in Nie, have not beenimplemented yet. 135



136 11. METHODS FOR VISUALIZING ALGEBRAIC GEOMETRYTogether with so-alled 3d-printers the triangulation software allows the mahine-prodution of real-world models. To our knowledge, this tehnique was �rst usedby mathematiians-sulpturs like Helaman Ferguson, Bathsheba Grossman, GeorgHart. Reently, the arhitet Jonathan Chertok reprodued the whole Rodenbergseries by this method based on the equations ommuniated to him by several math-ematiians inluding the author. In order to make the prodution of suh modelseasier, we implemented an extension for surf based on Johannes Beigel's versionof the program whih uses the triangulation library gts. Unfortunately, this soft-are is not in a publishable state yet, but it already allowed us to produe severalexamples, e.g. the �rst model of a 30-uspidal sexti surfae with the symmetry ofan iosahedron and a reprodution of a Clebsh diagonal ubi (�g. 11.1).
Figure 11.1. A reprodution of Clebsh's diagonal ubi surfaeusing a 3d-printer based on the data produed using our extensionof surf. 11.3. Interative SoftwareWith our interative visualization software Spiy and surfex we aim to go onestep further: The user an inlude the oordinates of points of a plane geometryonstrution into the equations of algebrai plane urves and surfaes. If the userthen moves the points then the images of the algebrai varieties hange aord-ingly. This makes the interative visualization of deformations and other proessespossible.11.3.1. Spiy � Interative Construtive and Algebrai Geometry.The ore of the omputer software Spiy (up to now only available as a pre-versionfrom [Lab03b℄) is a onstrutive geometry program designed both for visualizinggeometrial fats interatively on a omputer and for inluding them in publiations.Its main features are:

• Connetion to external software like the omputer algebra system Sin-gular ([GPS01℄) and the visualization software Surf ([End01℄) whihenables the user to inlude algebrai urves and surfaes in dynami on-strutions.
• Comfortable graphial user-interfae (f. �g. 11.2) for interative onstru-tions using the omputer-mouse inluding maro-reording, animation,et.
• High quality export to .fig-format (and in ombination with externalsoftware like Xfig or Fig2dev export to many other formats, like .eps,.pstex, et.).



11.3. INTERACTIVE SOFTWARE 137We implemented the �rst partiular example of suh a tool (alled xsprg,downloadable from [LvS00℄) during the writing of our diploma thesis under thediretion of D. van Straten. Van Straten had the idea that surf should be fastenough to be able to reompute two or three images of ubi surfaes per seond.In this way, he wanted to be able to manipulate six points in the plane and see thehanging surfaes at the same time. This is exatly the purpose of xsprg.After having reeived my diploma I developped Spiy as a muh more generaland powerful tool. Let us illustrate its usefulness again with the example of ubisurfaes:Example 11.1. We take three pairs of two points in the plane eah pair on-neted by a straight line (see �g. 11.2). It is well-known that the blowup of the plane

Figure 11.2. A sreen shot of the Spiy user interfae showingthree lines, that meet in a point and the orresponding ubi sur-fae, whih ontains an Ekardt Point (3). Buttons 1 and 2 areused to draw the lines and the surfae, respetively.in the six points yields a smooth ubi surfae if neither three of the points are on aommon line nor six of them are on a ommon oni. Furthermore, the blowup isbijetive outside the six base points, and straight lines onneting the base points aremapped to straight lines on the ubi surfae. Thus, in order to onstrut a ubisurfae with an Ekardt point (i.e. a point in whih three lines meet) we only haveto manipulate the six base points until the three lines in the plane meet in a point(see [LvS03℄ for details).11.3.2. surfex � Intuitive Visualization, even in the Internet. We of-ten simply need a good and easy way to visualize one or more surfaes and/or urveson them. Basially, Shmidt's new version 1.0.3 of Endraÿ's program surf an al-ready produe the required images, but it has some major de�ienies onerningthe usage. First, one needs to know surf's programming language. Seond, rota-tion within surf is far from intuitive. The purpose of our tool surfex [HLM05℄is exatly to �ll in this blank. Thus, surfex is basially an easy-to-use frontendfor surf whih allows intuitive rotation, saling, and usage in general, even in theinternet. We demonstrate its usefulness at a onrete example in the next hapter.11.3.3. surfex.lib � a Singular Interfae for surfex. The urrent ver-sion of surfex has the problem that it uses the raytraer surf for visualizing



138 11. METHODS FOR VISUALIZING ALGEBRAIC GEOMETRYalgebrai surfaes. And the raytraing tehnique is not able to visualize real one-dimensional parts of a surfae suh as the handle of the Whitney umbrella if it isnot spei�ed as the intersetion of surfaes.
Figure 11.3. surfex.lib an also visualize surfaes with realurves whih are not ontained in the real two-dimensional partof the surfae suh as the swallowtail.In ombination with Singular, this problem an be solved. Singular anompute the singular lous of a given surfae and an then pass those surfaeswhih ut out the singular urves to surfex. E.g., the following ode produes aorret image of the swallowtail (see �g. 11.3):LIB "surfex.lib";ring r = 0,(x,y,z),dp;poly swallowtail = -4*y^2*z^3-16*x*z^4+27*y^4+144*x*y^2*z+128*x^2*z^2-256*x^3;plotRotated(swallowtail, list(x,y,z),2);





The four-nodal Cayley ubi and its nine lines. The fats that a ubi annotontain more than four singularities and that any four-nodal ubi ontains exatlynine di�erent lines was already known to the geometers of the 19th entury.



CHAPTER 12Illustrating the Classi�ationof Real Cubi SurfaesIn this hapter we demonstrate the usefulness of our visualization tools Spiyand surfex for working with algebrai surfaes. Our example is the very lassialsubjet of real ubi surfaes. We will see that the use of our software does notonly allow us to visualize existing surfaes, but also helps to produe equations ofsurfaes (see also [LvS03℄, [HL05℄, [LvS00℄).In 1987, Knörrer and Miller [KM87℄ lassi�ed all real ubi surfaes in P3 withrespet to their topologial type. Roughly, the authors say that two ubi surfaeshave the same topologial type if they an be transformed ontinuously into eahother without hanging the shape. A similar lassi�ation had already been given byShlä�i in the 19th entury [Sh63℄, but Knörrer and Miller obtained more preiseand more omplete results. Some of these are based on ideas of Brue and Wall[BW79℄ who gave a modern treatment of the omplex ase.Here, we restrit ourselves to ubi surfaes with only rational double pointswhih is the most interesting part of the lassi�ation. We give an expliit reala�ne equation for eah lass in their list (see table 12.2 on page 145). These allowus to draw images for eah lass showing all singularities and lines (see �g. 12.3,12.4, 12.5) using our software surfex [HLM05℄.In the already ited artile, Shlä�i also gave equations for eah of his typesand desribed their onstrution in a very geometri way. In many ases, it is easyto �nd real a�ne equations from these with the help of our tool surfex. But in theother ases, there are too many free parameters and we have to use other methodssuh as the deformation tehniques desribed by Klein [Kle73℄.To perform these deformations expliitly, it is useful to have a visualizationsoftware at hand. We explain how to use our software surfex for suh purposes.surfex an be used diretly on our webpage [Lab03a℄. It an produe high qualityraytraed images for publiations in olor or in blak/white. Indeed, all the imagesin this hapter are produed using surfex in onnetion with Singular [GPS01℄.This omputer algebra program has been used to ompute a primary deompositionof the ideal (f, F9) desribing the 27 lines of f with multipliities whih allowed us todraw the lines on the surfaes using surfex. Here, F9 denotes Clebsh's ovariantof degree 9 (see, e.g., [LvS03, appendix 4.1℄ for a determinental formula for thisovariant).The webpage www.CubiSurfae.net [LvS00℄ ontains some movies and moreimages. surfex [HLM05℄ uses S. Endraÿ's surf [End01℄ to produe the highquality raytraed images of the surfaes and R. Morris's LSMP [Mor03℄ andK. Polthier's JavaView [Pol01℄ to allow rotation and saling of a triangulatedpreview. 141

www.CubicSurface.net


142 12. ILLUSTRATING THE CLASSIFICATION OF REAL CUBIC SURFACESSeveral mathematiians have already given real a�ne equations for partiularlyinteresting ubi surfaes suh as the Clebsh Diagonal Surfae or the four-nodalubi surfae. For some examples of Rodenberg's series there also exist a�ne equa-tions. But this series is restrited to only a few types of ubi surfaes, and severalof Rodenberg's models do not show all the projetive real lines beause some are atin�nity. In fat, this was Rodenberg's intention: His aim was to give an overviewof the possible singularities on ubi surfaes and the possible a�ne views of theprojetive surfaes.Here, instead, we do not show di�erent a�ne views of the same surfae. Wehoose real a�ne equations that allow us to show all singularities and lines in asingle image (or a single real-world model if we use 3d-printers).12.1. Knörrer/Miller's 45 Types of Real Cubi SurfaesTo state Knörrer/Miller's lassi�ation of real ubi surfaes with only rationaldouble points as singularities we need the following de�nition. For details andadditional results we refer to their artile [KM87℄.Definition 12.1 (p. 54/55 in [KM87℄).(1) µR denotes the number of (−2)-urves de�ned over R in the dual resolutiongraph of a rational double point that is de�ned over R. ν denotes thenumber of pairs of non-interseting omplex onjugate (−2)-urves in thisgraph.Name Old Name Normal Form Coxeter Diagram µR ν

A−

2k B2k+1 x2k+1 + y2
− z2 , 2k 0 k = 1, 2

A+
2k B2k+1 x2k+1 + y2 + z2 0 k − 1 k = 1

A−

2k−1 B2k x2k + y2
− z2 , 2k − 1 0 k = 2, 3

A+
2k−1 B2k x2k

− y2
− z2 1 k − 1 k = 2

A−

1 C2 x2 + y2 − z2 1 0

A�

1 C2 x2 + y2 + z2 1 0

D−

4 U6 x2y − y3 − z2 4 0

D+
4 U6 x2y + y3 + z2 2 1

D−

5 U7 x2y + y4
− z2 5 0

E−

6 U8 x3 + y4 − z2 6 0Table 12.1. The types of singularities ouring on real ubi sur-faes, their normal forms, their Coxeter diagrams, and the num-bers µR and ν.(2) Let Σ be a sequene of six points de�ned over R in almost general positionin P2(C) in the sense of [Dem80, p. 39℄. Then there exists r(Σ) ∈ N0,s.t. Σ onsists of 2r points that are invariant under omplex onjugationand 6 − 2r pairwise omplex onjugate points. We all r(Σ) the realityindex of Σ.(3) Let X be a ubi surfae in P(C) de�ned over R with only rational doublepoints. The reality index r(X) of X is de�ned as follows: Let X̃ denotethe desingularization of X and X(Σ) the blowup of P2(C) along Σ. Then,
r(X) = r(Σ), if X̃ ∼= X(Σ) for a sequene Σ of six points in almost generalposition in P2(C). Otherwise, r(X) = −1.



12.1. KNÖRRER/MILLER'S 45 TYPES OF REAL CUBIC SURFACES 143Using this notion it is possible to ompute the number of lines on a real ubisurfae:Theorem 12.1 (Satz 2.8 in [KM87℄). Let X ⊂ P3(C) be a ubi surfae de�nedover R with only rational double points as singularities. Suppose that the real part
XR ⊂ P3(R) of X has k singular points. Denote by µR(X) the sum of the µR forthese singular points and by ν(X) the sum of the ν of all singularities on X. Thenthe real part XR ontains exatly l(XR) lines, where(12.1) l(XR) =

(2 + 2r(X) − µR(X))(1 + 2r(X) − µR(X))

2
−(r(X)−2)+k−ν(X).For a ubi surfae X ⊂ P3(C) we an read the topology of its real part

XR ⊂ P3(R) from the reality index. E.g., the �ve smooth ubi surfaes, las-sially denoted by F1, F2, . . . , F5 (see [Seg42℄), are lassi�ed by the reality index,e.g., r(F5) = −1.Example 12.1. We illustrate the previous theorem using our software Spiy:We onstrut �ve points on a irle and another point. Furthermore, we writea Singular proedure whih omputes the equation of the ubi surfae and thelines on them (this an be done by only omputing 3 × 3 determinants, see e.g.[LvS03℄). We an now tell Spiy to reompute the equation and then surf todraw the orresponding image eah time one of the six points has been moved (see�gure 12.1, for details we refer to [LvS03℄). Using Knörrer/Miller's formula (12.1),it is easy to ompute the number of lines for the surfae X in the leftmost �gure.This one is smooth, i.e. k = µR(X) = ν(X) = 0, and all the six points are real, i.e.
r(X) = 3. By the formula, X ontains l(X) = 27 real lines (whih is also easy tosee by other means).
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Figure 12.1. The blowing-up of the projetive plane in six points,suh that all six are on a ommon oni, is a ubi surfae with anordinary double point. Note the hanging of the lines, when wedrag the point P2. When P2 lies on the oni through the other�ve points, 2 · 6 lines meet in the double point (1b � 3b) and sixpairs of two lines oinide (1a � 3a).



144 12. ILLUSTRATING THE CLASSIFICATION OF REAL CUBIC SURFACESNow let the sixth point also be on the irle as in the rightmost �gure. Then itis well-known that the orresponding ubi surfae develops an A−
1 -singularity andthat twelve of the 27 lines pass through this ordinary double point and oinide inpairs. This development an be visualized interatively using Spiy by moving thesixth point slowly. Aording to table 12.1 on page 142 µR(Y ) = 1, ν(X) = 0 forthe 1-nodal ubi surfae Y and of ourse k = 1. Formula (12.1) thus gives 21 asrequired.We an now state Knörrer/Miller's main result on ubi surfaes with onlyrational double points:Theorem 12.2 (Classi�ation, Liste 4 in [KM87℄). Let X ⊂ P3(C) be a ubisurfae de�ned over R with only rational double points and let XR = X ∩P3(R) beits real part. Then the topologial type of XR is one of the 45 types given in table 12.2on the next page. If X has exatly 3A−

1 singularities and X ontains exatly 12 lines(no. 18/19 in the table) then its topologial type an be determined by prop. 12.3below. Otherwise, the topologial type of X is determined by its singularities, itsnumber of lines, and the reality index r(X).To explain how to distinguish between the topologial types 18 and 19, we needKnörrer/Miller's notion of a on�guration type of an A−
1 singularity. We only givea sloppy de�nition and illustrate it using surfex, see [KM87, p. 63℄ for details.For this loal study we have to work in a�ne spae:For an A−

1 singularity, the tangent one is of the form x2 + y2 − z2. This oneintersets the ubi surfae X in a urve of degree 2·3 = 6, whih onsists in fat ofsix lines, ounted with multipliities. Knörrer/Miller desribe suh a on�gurationby a small irle together with six points (ounted with multipliities) beause asmall real sphere around the singularity intersets X in two small real �irles�(�g. 12.2 on page 146). On eah of these irles there lies one point of eah of thereal lines. Therefore, Knörrer/Miller denote a pair of omplex onjugated lines bya point in the enter of the irle, the real points are drawn on the irle in theorret order. Di�erent suh on�gurations orrespond to ubi surfaes of di�erenttopologial types.Example 12.2. Example (a) is a on�guration with one real point of multipliity
2, two real ones of multipliity 1, and two omplex onjugated ones. The other twoexamples show two doubled and two simple points (see �g. 12.2):(a) 2 , (b) 22 (KM18), () 2

2 (KM19). 2Proposition 12.3 (Topologial Types 18/19, p. 63 in [KM87℄). If a ubisurfae X has exatly 3A−
1 singularities and ontains 12 lines then X has the topo-logial type 18 if the singular points have a on�guration of type 22 (example12.2 (b)). Otherwise, the A−

1 singularities of X have a on�guration of type 2
2(example 12.2 ()) and X has the topologial type 19.



12.1. KNÖRRER/MILLER'S 45 TYPES OF REAL CUBIC SURFACES 145Name Sp. Cl. Sing. r l EquationKM1 I 12 ∅ 3 27 KM27 + 3
2
(x2 + y2

− z3)KM2 I 12 ∅ 2 15 KM27 + 8
5
((z + 1)2 − z2)KM3 I 12 ∅ 1 7 KM27 + 2

3
((z + 1)2 + (x − 1)2) − 4y2KM4 I 12 ∅ 0 3 KM2 − 4KM5 I 12 ∅ −1 3 KM27 − 2

3
((z + 1)2 + z2)KM6 II 10 A−

1 3 21 KM27 + 2(x2 + y2)KM7 II 10 A−

1 2 11 KM27 + z3 + y2KM8 II 10 A−

1 1 5 KM6 − 4y2KM9 II 10 A−

1 0 3 KM6 − 3(x2 + y2)KM10 II 10 A�

1 0 3 pc + (z + 1)·z2KM11 IV 8 2A−

1 3 16 KM27 + y2KM12 IV 8 2A−

1 2 8 KM27 + z2
− 1

5
(x + 1

2
)2KM13 IV 8 2A−

1 1 4 KM27 − y2KM14 III 9 A−

2 3 15 KM21 + 1
10

(y − 1)2KM15 III 9 A−

2 2 7 pl + z3 − z2(x − 1) − 1
5
(x − y)2KM16 III 9 A−

2 1 3 KM43 − y2KM17 III 9 A+
2 0 3 pc + z3KM18 VIII 6 3A−

1 3 12 KM43 + z2(x + 1
2
)KM19 VIII 6 3A−

1 3 12 KM43 + 2z2KM20 VIII 6 3A−

1 2 6 KM27 − z2KM21 VI 7 A−

2 A−

1 3 11 pl + z3 + z2(x + y − 2) + 1
10

(x − 1)2KM22 VI 7 A−

2 A−

1 2 5 pl + z3 + z2(x + y) + 1
5
(x − 1)2KM23 V 8 A−

3 3 10 wxy + (x + z)(y2
− ( 2

3
x)2 − ( 3

5
z)2), w = 1 − xKM24 V 8 A−

3 2 4 KM32 − 1
100

z2(x − z)KM25 V 8 A−

3 1 2 KM32 + 1
100

z2(x − z)KM26 V 8 A+
3 1 4 2(x2 + y2)w + 2x(z2

− 2x2
− 4y2), w = 1 − yKM27 XVI 4 4A−

1 3 9 4(pc + 1
2
) + 3(x2 + y2)(z − 6) − z(3 + 4z + 7z2)KM28 XIII 5 A−

2 2A−

1 3 8 KM43 + z2(x + 2)KM29 IX 6 2A−

2 3 7 KM43 + (x − 1)zKM30 IX 6 2A−

2 2 3 KM43 − 3
10

(x − 1)2KM31 X 6 A−

3 A−

1 3 7 wxz − (x + z)(x2
− y2), w = 1 − zKM32 X 6 A−

3 A−

1 2 3 wxy − (x + z)(x2 + y2), w = 1 − zKM33 VII 7 A−

4 3 6 wxy + y2z + yx2
− z3, w = 1 − x − y − zKM34 VII 7 A−

4 2 2 wxy − y2z + yx2 − z3, w = 1 − x − y − zKM35 XII 6 D−

4 3 6 (x + y + z)2w + xyz, w = 1
2
(1 − x − y − z)KM36 XII 6 D+

4 1 2 (x + y + z)2w + (x2 + y2)z, w = 1
2
(1 − x − y − z)KM37 XVII 4 2A−

2 A−

1 3 5 KM43 + (x − 1)z2KM38 XVIII 4 A−

3 2A−

1 3 5 wxz + y2(x + z), w = 2(1 + x − y + z)KM39 XIV 5 A−

4 A−

1 3 4 wxz − y2z + 1
2
x2y, w = 1

8
(1 − y − z)KM40 XI 6 A−

5 3 3 wxz + y2z + x3
− z3, w = 1 − xKM41 XI 6 A−

5 2 1 wxz + y2z + x3 + z3, w = 1KM42 XV 5 D−

5 3 3 wx2 + y2z + xz2, w = 1 + xKM43 XXI 3 3A−

2 3 3 tl + z3KM44 XIX 4 A−

5 A−

1 3 2 wxz − y2z − x3, w = 1 − zKM45 XX 4 E−

6 3 1 x2w − xz2 + y3, w = 1 − x − yTable 12.2. Our nie real a�ne equations for Knörrer/Miller's 45topologial types. The abreviation Sp. denotes Shlä�i's speiesof the surfae, Cl. its lass, Sing. its singularities. r denotes thereality index and l the number of real lines on the surfae.



146 12. ILLUSTRATING THE CLASSIFICATION OF REAL CUBIC SURFACES

KM18 (a) KM18 (b) KM19 (a) KM19 (b)Figure 12.2. The on�guration of the lines ut out by the tan-gent one at one of the three A−
1 singularities of our surfaes withtopologial types no. 18 and 19. For eah of the surfaes, we showtwo views (a), (b) from di�erent angles. The white lines have mul-tipliity two, the blak ones have multipliity one. The �gure aboveillustrates how surfex an draw urves on surfaes using the or-responding feature of surf. To draw the two doubled white lines,we omputed the equations f4, f5 utting these out on the surfaeusing Singular. Then we hose the numbers of the equations fromthe drop down menu in the row alled C2 and seleted the olorwhite.12.2. Construting Nie Real A�ne Equations12.2.1. Nie Equations. By a nie real a�ne equation f for a given topo-logial type t we mean an equation, s.t. its projetive losure f has the requiredtopologial type and s.t. the plane at in�nity neither ontains a singularity nor a lineof f . It has also to be possible to see all its singularities and lines in a single piture(modulo guessing using symmetries). This is not a preise de�nition. Nevertheless,we formulate our main result in the form of a theorem:Theorem 12.4. For eah topologial type t ∈ {1, 2, . . . , 45} of real ubi surfaeswith only rational double points there is a nie a�ne equation KMt in the sense ofthe preeding paragraph. The equations KMt are given in table 12.2 on page 145and the orresponding pitures are shown in the �gures 12.3, 12.4, 12.5. The olorsof the lines indiate their multipliities.Remark 12.5. For a nie equation for a given topologial we do not require thegreatest possible symmetry beause we want the equations to be generi in the sensethat the on�guration of the lines on the surfae should not be too speial. E.g., theClebsh Cubi Surfae has 10 so-alled Ekardt Points in whih three of its 27 reallines meet, but a generi ubi surfae with 27 lines does not have any suh point.



12.2. CONSTRUCTING NICE REAL AFFINE EQUATIONS 1471�3:�(r:3, 27l.)�(r:2, 15l.)�(r:1, 7l.)4�6:�(r:0, 3l.)�(r:-1, 3l.)
A−

1(r:3, 21l.)7�9:
A−

1(r:2, 11l.)
A−

1(r:1, 5l.)
A−

1(r:0, 3l.)10�12:
A�

1(r:0, 3l.)
2A−

1(r:3, 16l.)
2A−

1(r:2, 8l.)13�15:
2A−

1(r:1, 4l.)
A−

2(r:3, 15l.)
A−

2(r:2, 7l.) Figure 12.3. The surfaes KM1, . . . ,KM15. The olors of thelines indiate their multipliities: � 1, � 2, � 3, � 4, � 5,
� 6, � 8, � 9, � 10, � 12, � 15, � 16, � 27.



148 12. ILLUSTRATING THE CLASSIFICATION OF REAL CUBIC SURFACES16�18:
A−

2(r:1, 3l.)
A+

2(r:0, 3l.)
3A−

1(r:3, 12l.)19�21:
3A−

1(r:3, 12l.)
3A−

1(r:2, 6l.)
A−

2 , A−
1(r:3, 11l.)22�24:

A−
2 , A−

1(r:2, 6l.)
A−

3(r:3, 10l.)
A−

3(r:2, 4l.)25�27:
A−

3(r:1, 2l.)
A+

3(r:1, 4l.)
4A−

1(r:3, 9l.)28�30:
A−

2 , 2A−
1(r:3, 8l.)

2A−
2(r:2, 7l.)

2A−
2(r:2, 3l.) Figure 12.4. The surfaes KM16, . . . ,KM30. The olors of thelines indiate their multipliities: � 1, � 2, � 3, � 4, � 5,

� 6, � 8, � 9, � 10, � 12, � 15, � 16, � 27.



12.2. CONSTRUCTING NICE REAL AFFINE EQUATIONS 14931�33:
A−

3 , A−
1(r:3, 7l.)

A−
3 , A−

1(r:2, 3l.)
A−

4(r:3, 6l.)34�36:
A−

4(r:2, 2l.)
D−

4(r:3, 6l.)
D+

4(r:1, 2l.)37�39:
2A−

2 , A−
1(r:3, 5l.)

A−
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150 12. ILLUSTRATING THE CLASSIFICATION OF REAL CUBIC SURFACESRemark 12.6. Shlä�i orders the ubi surfaes �rst by their lass and thenby the worst singularity ouring. This di�ers from Knörrer/Miller's order whihis �rst by the sum of the Milnor numbers of the singularities and then by the worstsingularity ouring.In the following subsetions we desribe how to onstrut suh surfaes.12.2.2. Via Projetive Equations. For the projetive ase, Shlä�i alreadygave equations in [Sh63℄. He desribes in a very geometri way how to onstrutthem. In [Cay69℄, Cayley gives the same equations again and omputes a lot ofadditional data onneted to the surfaes.1To obtain a nie real a�ne equation from one of Shlä�i's equations is an easytask for most topologial types with higher singularities (A3 or higher): We justhave to hoose a good hyperplane at in�nity and maybe some onstants whih isnot di�ult using our tool surfex:Example 12.3. Let us take the equation wxz + y2z + x3 = 0 given by Shlä�i[Sh63, p. 357℄ for a projetive ubi surfae with an A1 and A5 singularity. Thehoie w = 1 − z gives our a�ne equation KM44.For those surfaes with only A1 and A2 singularities, this method does not workwell beause of the great number of free parameters. In this ase, we an either writedown the equation diretly (setion 12.2.3), or we an use a deformation proess(setion 12.2.4) already desribed by F. Klein in [Kle73℄.12.2.3. Diret Constrution. In some ases, it is easy to write down a niereal a�ne equation for a topologial type diretly using symmetry. For this purpose,we will use the three plane urves shown in �gure 12.6.
tl := x3 + 3x2 − 3xy2 + 3y2 − 4 pc := tl + 4 pl := (x − 1)(y − 1)(x + y)Figure 12.6. Three plane urves, useful for onstruting nieequations for ubi surfaes.Example 12.4 (Construting KM43 with three A−

2 Singularities). We take thepolynomial tl de�ning three triangle-symmetri lines (�g. 12.6) in the x, y-plane andadd the term z3: KM43 = tl + z3. At eah intersetion point of the lines tl, thisgives a singularity of type A−
2 with z-oordinate 0, see �g. 12.8(a).The four-nodal surfae KM27 an be onstruted in a similar way. This anda lot more information on nodal surfaes with dihedral symmetry an be found inS. Endraÿ's Ph.D. thesis [End96℄. The following example uses a plane urve with asolitary point. In the same way we obtain the surfae KM26 with an A+

3 singularity.1Attention, Cayley's list on p. 321 ontains some typos.



12.2. CONSTRUCTING NICE REAL AFFINE EQUATIONS 151Example 12.5 (Construting KM10 with an A�

1 Singularity). To onstrut asurfae with an A�

1 Singularity whih has the normal form x2 +y2 +z2 we start withthe triangle-symmetri plane ubi pc (�g. 12.6 on the faing page). The origin is asolitary point (i.e., a singularity with normal form x2+y2). Thus the surfae pc+z2has an A�

1 singularity with normal form x2 + y2 + z2 and is triangle-symmetri. Toobtain the desired a�ne topology we require a third root on the {x = y = 0} axes at
z = −1: KM10 = pc + (z + 1)·z2.12.2.4. The Deformation Proess. Klein's strategy for obtaining surfaeswith fewer singularities from surfaes with many singularities is based on the fatthat any singularity on a ubi surfae an be deformed separately.By the de�nition of a singularity, the origin an only be a singularity of ana�ne surfae f if the tangent one of f has degree at least 2. Thus, in order tosmooth an isolated singularity at the origin, we an simply add a term of degree
1 or 0. But whih terms an we add to the equation of f without hanging thetype of a singularity at the origin? For A1 singularities, this is very easy: Thesesingularities are haraterized by the fat that their tangent one also de�nes an A1singularity.2 So, we an add any term of degree greater than two and any term ofdegree two whose oe�ient is small enough. E.g. x2 + y2 − z2 + 1

10z2 + 1
13xy + x3has a singularity of type A−

1 at the origin.Using the preeding fats we an deform a ubi surfae with four singularitiesof type A−
1 into one with only three suh singularities:Example 12.6 (Smoothing one of four A1 Singularities). Let KM27 be theubi surfae with four A−

1 -singularities (see table 12.2 on page 145). Three of itssingularities lie in the plane {z = 0}. Using surfex, it is easy to �nd an ε, s.t. thesurfae KM27 + εz2 has the desired topology (see �g. 12.7):Go to the surfex web-page [HLM05℄, start the surfex program, and enterthe equation of KM27. Then add a term +0.1*z�2 and hek the permanentlyhekbox � this will premanently reompute raytraed images of your surfae. Dragthe omputer mouse over the green ball to rotate the surfae until you see all sin-gularities. You an sale the image by pressing s on your keyboard while dragging.Now your surfex sreen should look similar to �g. 12.7 on the following page. Thesingularity in the middle has been smoothed in suh a way that the neighborhood ofthe singularity looks like a hyperboloid of one sheet. Adding -0.1*z�2 leads to aneighborhood whih looks like a hyperboloid of two sheets. 2It is a little more subtle to keep singularities of type A−
j or A+

j , j > 1, whiledeforming others. Forgetting about the sign for a moment, these singularities havethe equation xj+1 + y2 + z2 in a suitable oordinate system. Aj , j > 1, singularitiesare haraterized by the property that their tangent one is of degree two andonsists of the union of two di�erent planes.3Let f be a polynomial in three variables x, y, z de�ning a singularity of type
Aj , j ≥ 2, at the origin. By the �nite determinay theorem (see, e.g., [Dim87℄),we an add an element of the ideal I := m

2·Jf to f without hanging the type2This is also the reason why the geometers of the 19th entury alled the A1 singularitiesonial singularities or singularities of type C2. Other names are proper node, ordinary doublepoint.3This is the reason why the lassial geometers alled a singularity of type Aj a biplanar node
Bj+1. A singularity whose tangent one onsists of a single multiple plane was alled a uniplanarnode.
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Figure 12.7. Smoothing one of the four singularities of the ubisurfae KM27.of the singularity. Here, m denotes the maximal ideal (x, y, z) of the origin andthus m
2 = (x2, xy, xz, y2, yz, z2). Jf := (∂f

∂x , ∂f
∂y , ∂f

∂z ) is the so-alled jaobian idealgenerated by the partial derivatives of f .Example 12.7. We take the singularity of type A−
3 at the origin, de�ned by

f := x4+y2−z2 = 0. Its jaobian ideal is Jf = (x3, y, z). If we hoose g1 := xy ∈ m
2and g2 := y ∈ Jf we get g := g1g2 = xy2. Then f + g still de�nes a singularity oftype A3 at the origin. Furthermore, f + εg is an A−

3 singularity for ε small enough.We now ome to the global situation of a ubi surfae f with only isolatedsingularities of type Aj , j ≥ 1. The following example desribes how to use thetehniques above to deform some of its singularities while keeping others:Example 12.8 (Deforming two of three A−
2 Singularities to A−

1 Singularities).We start with the surfae KM43 whih has exatly three singularities of type A−
2(�g. 12.8(a)). The surfae tl + z3 + z2 (�g. 12.8(b)) has three singularities oftype A−

1 at the same oordinates, beause the tangent one is a one of the form
x2 − y2 + z2 loally at eah of these points. One of these singularities has theoordinates Q := (−2, 0, 0). To get a surfae with a singularity of type A−

2 at Q andtwo singularities of type A−
1 , we need to adjust the onstrution slightly.Our general remarks from the beginning of this subsetion tell us that we haveto look at the jaobian ideal JKM43

at Q. Over the rational numbers, Singulargives the following primary deomposition: JKM43
= (x, y, z2) ∩ (x − 1, y2 − 3, z2)∩

(x + 2, y, z2). Loally at Q, the relevant primary omponent is (x + 2, y, z2). Wehoose E := x + 2 ∈ (x + 2, y, z2). As z2 ∈ m
2, we then know that KM43 + z2 · Ehas a singularity of type A2 at Q.Loally at the other two singularities (whih both have x-oordinate 1), E takesthe value 1 + 2 = 3. Thus, at these singularities, KM43 + z2 · E behaves likeKM43 + z2 · 3, whih has A−

1 singularities at these points as already seen above.To hek that our hoies of planes and onstants were reasonable and to un-derstand the onstrution a little better, we an again use surfex. We type theequation of KM43 into surfex as f1. Then we add another two equations using theadd eqn button and hoose f2 to be x+2 and f3 to be z. If the permanently hek-box is ativated we already see the three surfaes in one piture. When adjusting the
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(a) (b) (c)Figure 12.8. Deforming the surfae KM43 (image (a)) with threesingularities of type A−
2 into KM28 (image (c)) with one suh sin-gularity and two A−

1 singularities.olors by liking at the right of the equations, we get a result similar to �g. 12.8.We an hide some of the surfaes by deseleting the hekbox at the right of theequations. When typing into f1 the hanges desribed above, we obtain suessivelythe three lower images shown in the �gure. We an produe the blak/white imagesused for the present publiation in the following way: We press the button showingthe small disk, selet the dithered hekbox, hoose an appropriate resolution, andthen lik on save. A small dialog shows up, where we an give some �lename. Thehigh-resolution image is then omputed on the webserver. From there, it an thenbe downloaded using the your files button in the surfex window. 2



A one, a quadri surfae with a node. How many nodes an a surfae of degree din P3 have?



FinallyIt is natural to try to apply the methods and algorithms presented in the seondpart of this work to similar ases. In partiular, it would be interesting to onstruta surfae in P3 of degree 11 with 430 nodes and to �nd out if our onjeture on thenumber of nodes on dihedral-symmetri surfaes (hapter 8) an be improved. Ifsuh surfaes exist, will their numbers of nodes be realizable with only real nodes?Families of varieties within whih one searhes for some partiularly interest-ing examples also our in other branhes of algebrai geometry. Variants of thealgorithm that we presented in hapter 9 an thus also be applied to suh problems.Another wide �eld with a lot of potential for extensions is the visualization ofreal hypersurfaes with (many) singularities. First, our visualization tools whihwe presented in part 3 an be optimized and extended in many aspets. But alsothe triangulation of real singular varieties whih has still not been developped ina satisfatory way would be an interesting ahievement. E.g., in ombination with(maybe three-dimensional) dynami onstrutive geometry software (similar to ourtool Spiy) this would open the way to make visualization even more interativeand intuitive.When browsing through our historial survey (part 1) and our new onstrutions(part 2), one an see that there are still lots of interesting open questions in the�eld of hypersurfaes with many singularities and related areas. We hope that thepresent work enourages many other people to work on this fasinating subjet.
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