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Summary. Knörrer and Miller classified the real projective cubic surfaces in
� 3( � )

with respect to their topological type. For each of their 45 types containing only
rational double points we give an affine equation, s.t. none of the singularities and
none of the lines are at infinity. These equations were found using classical methods
together with our new visualization tool surfex. This tool also enables us to give
one image for each of the topological types showing all the singularities and lines.

1 Introduction

A projective real cubic surface in real projective three-space � 3( � ) is a homoge-
nous polynomial f of degree 3 in four variables x, y, z, w with real coefficients:

f =
∑

i,j,k,l∈ � 0 | i+j+k+l=3

ai,j,k,lx
iyjzkwl,

where ai,j,k,l ∈ � . In 1987, Knörrer and Miller [13] classified all such surfaces
with respect to their topological type. A similar classification had already
been given by Schläfli in the 19th century [19], but Knörrer and Miller obtain
more precise and more complete results. Some of these are based on ideas of
Bruce and Wall [2] who gave a modern treatment of the complex case.

Here, we restrict ourselves to cubic surfaces with only rational double
points which is the most interesting part of the classification. We summarize
briefly Knörrer/Miller’s main results on these surfaces and give an explicit
real affine equation for each class in their list (see table 2 on page 7). These
allow us to draw images for each class showing all singularities and lines (see
fig. 2, 3, 4) using our software surfex [10].

In the already cited article, Schläfli also gave equations for each of his types
and described their construction in a very geometric way. In many cases, it is
easy to find real affine equations from these with the help of our tool surfex.
But in the other cases, there are too many free parameters and we have to use
other methods such as the deformation techniques described by Klein [11].
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To perform these deformations explicitly, it is useful to have a visualiza-
tion software at hand. We explain how to use our software surfex for such
purposes. surfex can be used directly on our webpage [14]. It can also pro-
duce high quality raytraced images for publications in color or in black/white.
All the images in the present paper are produced using surfex in connection
with Singular [9]. This computer algebra program was used to compute a
primary decomposition of the ideal (f, F9) describing the 27 lines of f with
multiplicities which allowed us to draw the lines on the surfaces using surfex.
Here, F9 denotes Clebsch’s covariant of degree 9 (see, e.g., [16, appendix 4.1]
for a determinental formula for this covariant).

The webpage www.CubicSurface.net [15] contains some movies and more
images. surfex [10] uses S. Endraß’s surf [7] to produce the high quality
raytraced images of the surfaces and R. Morris’s LSMP [17] and K. Polthier’s
JavaView [18] to allow rotation and scaling of a triangulated preview.

Several mathematicians have already given real affine equations for partic-
ularly interesting cubic surfaces such as the Clebsch Diagonal Surface or the
four-nodal cubic surface. Recently, the architect J. Chertok collected equa-
tions for Rodenberg’s 100-year-old series of plaster-models. These equations
were communicated to him by different people, mainly S. Endraß and the
second author. With these the architect recreated Rodenberg’s series using
3d-printers. But also Rodenberg’s series is restricted to some types of cubic
surfaces, and several of Rodenberg’s models do not show all the projective
real lines because some are at infinity. In fact, this was Rodenberg’s intention.
His aim was to give an overview of the possible singularities on cubic surfaces
and the possible affine views of the projective surfaces. Here instead, we do
not show different affine views of the same surfaces. We choose real affine
equations that allow us to show all singularities and lines in a single image.

The second author thanks the organizers of the AGGM 2004 workshop
at Nice for their hospitality. He also thanks S. Endraß and D. van Straten,
without whom our tool surfex would never have existed, for many valuable
discussions and motivation. Furthermore, we thank R. Morris, who is a co-
author of our tool surfex and with whom the second author had several
discussions concerning the visualization of algebraic surfaces. The first au-
thor was supported by the E-Learning Förderprogramm 2004 of the Johannes
Gutenberg Universität Mainz.

2 The Main Results of Knörrer/Miller on Cubic
Surfaces with only Rational Double Points

We briefly review some results of Knörrer and Miller. As already mentioned
we restrict ourselves to those concerning only rational double points. In [13],
the authors say that two cubic surfaces have the same topological type if they
can be transformed continuously into each other without changing the shape.
The precise definition uses the finer notion of equisingularity:
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Definition 1 (4.1 in [13]).

1. A differentiable family (Yt)t∈[0,1] of cubic surfaces in � 3( � ) with equations
ft is called equisingular if in the neighborhood of each point it can be
extended to a family of diffeomorphisms of the surrounding space. I.e.,
if for each t0 ∈ [0, 1] and each p ∈ Yt0 there exists a neighborhood I
of t0 in [0, 1], a neighborhood U of p in � 3( � ) and a diffeomorphism
Φ : U × I → U × I, s.t. the following diagram commutes:

U × I Φ→ U × I
∪ ∪

{(x, t) ∈ U × I | ft0(x) = 0} Φ→ {(x, t) ∈ U × I | ft(x) = 0}
pr2 ↘ ↙ pr2

I

Two surfaces that can be transformed into each other by an equisingular
family are called equisingular isotopic.

2. Two cubic surfaces Y0, Y1 ∈ � 3( � ) have the same topological type if there
are projectively equivalent surfaces Y ′0 , Y

′
1 which are equisingular isotopic.

There exist at most two different equisingular isotopy classes of cubic sur-
faces of the same topological type. Equisingular families are characterized by
their configuration of singularities:

Proposition 1 (4.2 in [13]).

1. If two cubic surfaces in � 3( � ) with only isolated singularities have the
same topological type then suitable neighborhoods of their singular sets are
analytically isomorphic.

2. Any differentiable family of cubics in � 3( � ) with only isolated singularities
for which the configuration of singularities is constant is equisingular.

Table 1 on the next page gives an overview of the rational double points
occuring on cubic surfaces (see also [5] or [1]). The classical geometers associ-
ated to each surface f a class which is the number of tangency points f has
with a generic pencil of hyperplanes (for computing the class see [2, sect. 3]).
The subscript of the old names for the singularities is the number by which
the class drops when a cubic surface possesses such a singularity (see table 1).

For the following definition we assume familiarity with some concepts from
algebraic geometry, in particular with the blowup. A reader who is not familiar
with this should simply read the numbers from table 1 on the following page.

Here, we just want to mention that it is well-known that the blowup ˜� 2( � )
of the projective plane � 2( � ) in a set of six points Σ (basepoints) which are in
general position (i.e. no three on a line, no six on a conic) is a smooth complex
cubic surface and that all smooth complex cubic surfaces can be obtained in
this way. This blowup is a birational map which is a bijection away from the
basepoints, i.e. for all points in � 2( � )\Σ. In the real case, we have to be more
careful: the cubic F5 with two components is not the result of such a blowup:
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Definition 2 (p. 54/55 in [13]).

1. µ � denotes the number of (−2)-curves defined over � in the dual resolu-
tion graph of a rational double point that is defined over � . ν denotes the
number of pairs of non-intersecting complex conjugate (−2)-curves in this
graph.

Name Old Name Normal Form Coxeter Diagram µ � ν

A−2k B2k+1 x2k+1 + y2 − z2 , 2k 0 k = 1, 2

A+
2k B2k+1 x2k+1 + y2 + z2 0 k − 1 k = 1

A−2k−1 B2k x2k + y2 − z2 , 2k − 1 0 k = 2, 3

A+
2k−1 B2k x2k − y2 − z2 1 k − 1 k = 2

A−1 C2 x2 + y2 − z2 1 0

A�1 C2 x2 + y2 + z2 1 0

D−4 U6 x2y − y3 − z2 4 0

D+
4 U6 x2y + y3 + z2 2 1

D−5 U7 x2y + y4 − z2 5 0

E−6 U8 x3 + y4 − z2 6 0

Table 1. The types of singularities occuring on real cubic surfaces, their normal
forms, and the numbers µ � and ν. For later use, we also give their Coxeter Diagrams.

2. Let Σ be a sequence of six points defined over � in almost general position
in � 2( � ) in the sense of [4, p. 39]. Then there exists r(Σ) ∈ � 0, s.t. Σ
consists of 2r points that are invariant under complex conjugation and
6− 2r pairwise compl. conj. points. We call r(Σ) the reality index of Σ.

3. Let X be a cubic surface in � ( � ) defined over � with only rational double

points. The reality index r(X) of X is defined as follows: Let X̃ denote
the desingularization of X and X(Σ) the blowup of � 2( � ) along Σ. Then,

r(X) = r(Σ), if X̃ ∼= X(Σ) for a sequence Σ of six points in almost
general position in � 2( � ). Otherwise, r(X) = −1.

Theorem 1 (Satz 2.8 in [13]). Let X ⊂ � 3( � ) be a cubic surface defined
over � with only rational double points as singularities. Suppose that the real
part X � ⊂ � 3( � ) of X has k singular points. Denote by µ � (X) the sum of the
µ � for these singular points and by ν(X) the sum of the ν of all singularities
on X. Then the real part X � contains exactly l(X � ) lines, where

l(X � ) =
(2 + 2r(X)− µ � (X))(1 + 2r(X)− µ � (X))

2
− (r(X)− 2) + k− ν(X).

For a cubic surface X ⊂ � 3( � ) we can read the topology of its real part
X � ⊂ � 3( � ) from the reality index. E.g., the five smooth cubic surfaces,
classically denoted by F1, F2, . . . , F5 (see [20]), are classified by the reality
index, e.g., r(F5) = −1. Here is another result of Knörrer/Miller of this kind:
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Lemma 1 (3.2, 3.3, 4.3 in [13]).

1. If X � does not contain any singularity of type A� and r(X) ≥ 0 then X �
is connected and χ(X � ) = 1− 2r(X) + µ � (X). If r(X) = −1 then X � is
diffeomorphic to the disjoint union � 2( � ) t S2.

2. If p ∈ X � is a singular point of type A� then X � does not contain any
other singularity and X � is diffeomorphic to � 2( � ) t {p}.

3. Cubic surfaces of the same topological type are homeomorphic.
4. Two cubic surfaces of the same topological type with only rational singu-

larities have the same reality index.

The following is Knörrer/Miller’s main result on cubic surfaces with only
rational double points:

Theorem 2 (Classification, Liste 4 in [13]). Let X ⊂ � 3( � ) be a cubic
surface defined over � with only rational double points and let X � = X∩ � 3( � )
be its real part. Then the topological type of X � is one of the 45 types given in
table 2 on page 7. If X has exactly 3A−1 singularities and X contains exactly
12 lines (no. 18/19 in the table) then its topological type can be determined
by prop. 2 below. Otherwise, the topological type of X is determined by its
singularities, its number of lines, and the reality index r(X).

To explain how to distinguish between the types 18 and 19, we need
Knörrer/Miller’s notion of a configuration type of an A−1 singularity. We only
give a sloppy definition and illustrate it using surfex, see [13, p. 63] for
details. For this local study we have to work in affine space:

Recall that the tangent cone tc(f) of a singularity f at the origin is the
lowest non-zero homogenous part of f . For an A−1 singularity, it is a cone of the
form x2 +y2−z2. The tangent cone intersects the cubic surface X in a curve of
degree 2·3 = 6, which consists in fact of six lines, counted with multiplicities.
Knörrer/Miller describe such a configuration by a small circle together with
six points (counted with multiplicities), because a small real sphere around
the singularity intersects X in two small real ,,circles” (fig. 1 on the following
page). On each of these circles there lies one point of each of the real lines.
Therefore, Knörrer/Miller denote a pair of complex conjugated lines by a
point in the center of the circle, the real points are drawn on the circle in
the correct order. Different such configurations correspond to cubic surfaces
of different topological types.

Example 1. Example (a) is a configuration with one real point of multiplicity
2, two real ones of multiplicity 1, and two complex conjugated ones. The other
two examples show two doubled and two simple points (see fig. 1):

(a) 2 , (b) 22 (KM18 in fig. 1), (c) 2
2

(KM19 in fig. 1). 2

Proposition 2 (Topological Types 18/19, p. 63 in [13]). If a cubic sur-
face X has exactly 3A−1 singularities and contains 12 lines then X has the
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KM18 (a) KM18 (b) KM19 (a) KM19 (b)

Fig. 1. The configuration of the lines cut out by the tangent cone at one of the three
A−1 singularities of our surfaces with topological types no. 18 and 19. For each of
the surfaces, we show two views (a), (b) from different angles. The white lines have
multiplicity two, the black ones have multiplicity one. The figure above illustrates
how surfex can draw curves on surfaces using the corresponding feature of surf. To
draw the two doubled white lines, we computed the equations f4, f5 cutting these
out on the surface using Singular. Then we chose the numbers of the equations
from the drop down menu in the row called C2 and selected the color white.

topological type 18 if the singular points have a configuration of type 22 (ex-

ample 1 (b)). Otherwise, the A−1 singularities of X have a configuration of

type 2
2

(example 1 (c)) and X has the topological type 19.

3 Constructing Nice Real Affine Equations

3.1 Nice Equations

By a nice real affine equation f for a given topological type t we mean an
equation, s.t. its projective closure f has the required topological type and s.t.
the plane at infinity neither contains a singularity nor a line of f . It has also
to be possible to see all its singularities and lines in a single picture (modulo
guessing using symmetries). This is not a precise definition. Nevertheless, we
formulate our main result in the form of a theorem:
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Name Sp. Cl. Sing. r l Equation

KM1 I 12 ∅ 3 27 KM27 + 3
2
(x2 + y2 − z3)

KM2 I 12 ∅ 2 15 KM27 + 8
5
((z + 1)2 − z2)

KM3 I 12 ∅ 1 7 KM27 + 2
3
((z + 1)2 + (x− 1)2)− 4y2

KM4 I 12 ∅ 0 3 KM2 − 4

KM5 I 12 ∅ −1 3 KM27 − 2
3
((z + 1)2 + z2)

KM6 II 10 A−1 3 21 KM27 + 2(x2 + y2)

KM7 II 10 A−1 2 11 KM27 + z3 + y2

KM8 II 10 A−1 1 5 KM6 − 4y2

KM9 II 10 A−1 0 3 KM6 − 3(x2 + y2)

KM10 II 10 A�1 0 3 pc+ (z + 1)·z2

KM11 IV 8 2A−1 3 16 KM27 + y2

KM12 IV 8 2A−1 2 8 KM27 + z2 − 1
5
(x+ 1

2
)2

KM13 IV 8 2A−1 1 4 KM27 − y2

KM14 III 9 A−2 3 15 KM21 + 1
10

(y − 1)2

KM15 III 9 A−2 2 7 pl + z3 − z2(x− 1)− 1
5
(x− y)2

KM16 III 9 A−2 1 3 KM43 − y2

KM17 III 9 A+
2 0 3 pc+ z3

KM18 VIII 6 3A−1 3 12 KM43 + z2(x+ 1
2
)

KM19 VIII 6 3A−1 3 12 KM43 + 2z2

KM20 VIII 6 3A−1 2 6 KM27 − z2

KM21 VI 7 A−2 A
−
1 3 11 pl + z3 + z2(x+ y − 2) + 1

10
(x− 1)2

KM22 VI 7 A−2 A
−
1 2 5 pl + z3 + z2(x+ y) + 1

5
(x− 1)2

KM23 V 8 A−3 3 10 wxy + (x+ z)(y2 − ( 2
3
x)2 − ( 3

5
z)2), w = 1− x

KM24 V 8 A−3 2 4 KM32 − 1
100

z2(x− z)
KM25 V 8 A−3 1 2 KM32 + 1

100
z2(x− z)

KM26 V 8 A+
3 1 4 2(x2 + y2)w + 2x(z2 − 2x2 − 4y2), w = 1 − y

KM27 XVI 4 4A−1 3 9 4(pc+ 1
2

2 2) + 3(x + y )(z − 6) − z(3 + 12z + 7z2)
KM28 XIII 5 A−2 2A−1 3 8 KM43 + z2(x+ 2)

KM29 IX 6 2A−2 3 7 KM43 + (x− 1)z

KM30 IX 6 2A−2 2 3 KM43 − 3
10

(x− 1)2

KM31 X 6 A−3 A
−
1 3 7 wxz − (x+ z)(x2 − y2), w = 1 − z

KM32 X 6 A−3 A
−
1 2 3 wxy − (x+ z)(x2 + y2), w = 1− z

KM33 VII 7 A−4 3 6 wxy + y2z + yx2 − z3, w = 1− x− y − z
KM34 VII 7 A−4 2 2 wxy − y2z + yx2 − z3, w = 1− x− y − z
KM35 XII 6 D−4 3 6 (x+ y + z)2w + xyz, w = 1

2
(1 − x− y − z)

KM36 XII 6 D+
4 1 2 (x+ y + z)2w + (x2 + y2)z, w = 1

2
(1 − x− y − z)

KM37 XVII 4 2A−2 A
−
1 3 5 KM43 + (x− 1)z2

KM38 XVIII 4 A−3 2A−1 3 5 wxz + y2(x+ z), w = 2(1 + x− y + z)

KM39 XIV 5 A−4 A
−
1 3 4 wxz − y2z + 1

2
x2y, w = 1

8
(1− y − z)

KM40 XI 6 A−5 3 3 wxz + y2z + x3 − z3, w = 1− x
KM41 XI 6 A−5 2 1 wxz + y2z + x3 + z3, w = 1

KM42 XV 5 D−5 3 3 wx2 + y2z + xz2, w = 1 + x

KM43 XXI 3 3A−2 3 3 tl + z3

KM44 XIX 4 A−5 A
−
1 3 2 wxz − y2z − x3, w = 1− z

KM45 XX 4 E−6 3 1 x2w − xz2 + y3, w = 1 − x− y
Table 2. Our nice real affine equations for Knörrer/Miller’s 45 topological types.
The abreviation Sp. denotes Schläfli’s species of the surface, Cl. its class, Sing. its
singularities. r denotes the reality index and l the number of real lines on the surface.
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1–3:

–

(r:3, 27l.)

–

(r:2, 15l.)

–

(r:1, 7l.)

4–6:

–

(r:0, 3l.)

–

(r:-1, 3l.)

A−1
(r:3, 21l.)

7–9:

A−1
(r:2, 11l.)

A−1
(r:1, 5l.)

A−1
(r:0, 3l.)

10–12:

A�1
(r:0, 3l.)

2A−1
(r:3, 16l.)

2A−1
(r:2, 8l.)

13–15:

2A−1
(r:1, 4l.)

A−2
(r:3, 15l.)

A−2
(r:2, 7l.)

Fig. 2. The surfaces KM1, . . . ,KM15. The colors of the lines indicate their multi-
plicities: � 1, � 2, � 3, � 4, � 5, � 6, � 8, � 9, � 10, � 12, � 15, �
16, � 27.
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16–18:

A−2
(r:1, 3l.)

A+
2

(r:0, 3l.)

3A−1
(r:3, 12l.)

19–21:

3A−1
(r:3, 12l.)

3A−1
(r:2, 6l.)

A−2 , A
−
1

(r:3, 11l.)

22–24:

A−2 , A
−
1

(r:2, 6l.)

A−3
(r:3, 10l.)

A−3
(r:2, 4l.)

25–27:

A−3
(r:1, 2l.)

A+
3

(r:1, 4l.)

4A−1
(r:3, 9l.)

28–30:

A−2 , 2A
−
1

(r:3, 8l.)

2A−2
(r:2, 7l.)

2A−2
(r:2, 3l.)

Fig. 3. The surfaces KM16, . . . ,KM30. The colors of the lines indicate their multi-
plicities: � 1, � 2, � 3, � 4, � 5, � 6, � 8, � 9, � 10, � 12, � 15, �
16, � 27.
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31–33:

A−3 , A
−
1

(r:3, 7l.)

A−3 , A
−
1

(r:2, 3l.)

A−4
(r:3, 6l.)

34–36:

A−4
(r:2, 2l.)

D−4
(r:3, 6l.)

D+
4

(r:1, 2l.)

37–39:

2A−2 , A
−
1

(r:3, 5l.)

A−3 , 2A
−
1

(r:3, 5l.)

A−4 , A
−
1

(r:3, 4l.)

40–42:

A−5
(r:3, 3l.)

A−5
(r:2, 1l.)

D−5
(r:3, 3l.)

43–45:

3A−2
(r:3, 3l.)

A−5 , A
−
1

(r:3, 2l.)

E−6
(r:2, 1l.)

Fig. 4. The surfaces KM31, . . . ,KM45. The colors of the lines indicate their multi-
plicities: � 1, � 2, � 3, � 4, � 5, � 6, � 8, � 9, � 10, � 12, � 15, �
16, � 27.
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Theorem 3. For each topological type t ∈ {1, 2, . . . , 45} of cubic surfaces with
only rational double points there is a nice affine equation KMt in the sense
of the preceding paragraph. The equations KMt are given in table 2 on page 7
and the corresponding pictures are shown in the figures 2, 3, 4.

Remark 1. For a nice equation for a given topological we do not require the
greatest possible symmetry because we want the equations to be generic in
the sense that the configuration of the lines on the surface should not be too
special. E.g., the Clebsch Cubic Surface has 10 so-called Eckardt Points in
which three of its 27 real lines meet, but a generic cubic surface with 27 lines
does not have any such point.

Remark 2. Schläfli orders the cubic surfaces first by their class and then by
the worst singularity occuring. This differs from Knörrer/Miller’s order which
is first by the sum of the Milnor numbers of the singularities and then by the
worst singularity occuring.

In the following subsections we describe how to construct such surfaces.

3.2 Via Projective Equations

For the projective case, Schläfli already gave equations in [19]. He describes
in a very geometric way how to construct them. In [3], Cayley gives the same
equations again and computes a lot of additional data connected to the sur-
faces.3

To obtain a nice real affine equation from one of Schläfli’s equations is an
easy task for most topological types with higher singularities (A3 or higher):
We just have to choose a good hyperplane at infinity and maybe some con-
stants which is not difficult using our tool surfex:

Example 2. Let us take the equation wxz + y2z + x3 = 0 given by Schläfli
[19, p. 357] for a projective cubic surface with an A1 and A5 singularity. The
choice w = 1− z gives our affine equation KM44.

For those surfaces with only A1 and A2 singularities, this method does
not work well because of the great number of free parameters. In this case,
we can either write down the equation directly (section 3.3), or we can use a
deformation process (section 3.4) already described by F. Klein in [11].

3.3 Direct Construction

In some cases, it is easy to write down a nice real affine equation for a topo-
logical type directly using symmetry. For this purpose, we will use the three
plane curves shown in figure 5.

3Attention, Cayley’s list on p. 321 contains some typos.
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tl := x3 + 3x2 − 3xy2 + 3y2 − 4 pc := tl + 4 pl := (x− 1)(y − 1)(x+ y)

Fig. 5. Three plane curves, useful for constructing nice equations for cubic surfaces.

Example 3 (Constructing KM43 with three A−2 Singularities). We take the
polynomial tl defining three triangle-symmetric lines (fig. 5) in the x, y-plane
and add the term z3: KM43 = tl + z3. At each intersection point of the lines
tl, this gives a singularity of type A−2 with z-coordinate 0, see fig. 8(a).

The four-nodal surface KM27 can be constructed in a similar way. This
and a lot more information on nodal surfaces with dihedral symmetry can
be found in S. Endraß’s Ph.D. thesis [6]. The following example uses a plane
curve with a solitary point. In the same way we obtain the surface KM26 with
an A+

3 singularity.

Example 4 (Constructing KM10 with an A�1 Singularity). To construct a sur-
face with an A�1 Singularity which has the normal form x2 + y2 + z2 we start
with the triangle-symmetric plane cubic pc (fig. 5). The origin is a solitary
point (i.e., a singularity with normal form x2+y2). Thus the surface pc+z2 has
an A�1 singularity with normal form x2 +y2 +z2 and is triangle-symmetric. To
obtain the desired affine topology we require a third root on the {x = y = 0}
axes at z = −1: KM10 = pc+ (z + 1)·z2.

3.4 The Deformation Process

Klein’s strategy for obtaining surfaces with fewer singularities from surfaces
with many singularities is based on the fact that any singularity on a cubic
surface can be deformed separately.

In the case of complex projective cubic surfaces, this fact can be formu-
lated in the following way (see Knörrer/Barth’s article in [8] for an overview
on this and other visible properties of cubic surfaces): The configurations of
rational double points occuring on cubic surfaces are exactly those for which
the disjoint union of their Coxeter Diagrams is a subgraph of the Coxeter
Diagram of Ẽ6, see fig. 6. A surface can be specialized into another one if and
only if its graph is contained in the other’s graph.

By the definition of a singularity, the origin can only be a singularity of an
affine surface f if the tangent cone of f has degree at least 2. Thus, in order
to smooth an isolated singularity at the origin, we can simply add a term of
degree 1 or 0.



Illustrating the Classification of Real Cubic Surfaces 13

eE6 : 3A2 : A2, 2A1 :

Fig. 6. There exists a cubic surface with three singularities of type A2, because the
disjoint union of three graphs of the A2 singularity is a subgraph of the graph eE6.
A cubic surface with an A2 singularity and two A1 singularities can be specialized
into one with three A2 singularities as can be seen from the graphs. See table 1 on
page 4 for the Coxeter Diagrams of the singularities of the rational double points
on cubic surfaces.

But which terms can we add to the equation of f without changing the
type of a singularity at the origin? For A1 singularities, this is very easy: These
singularities are characterized by the fact that their tangent cone also defines
an A1 singularity.4 So, we can add any term of degree greater than two and
any term of degree two whose coefficient is small enough. E.g. x2 + y2− z2 +
1
10z

2 + 1
13xy + x3 has a singularity of type A−1 at the origin.

Using the preceding facts we can deform a cubic surface with four singu-
larities of type A−1 into one with only three such singularities:

Example 5 (Smoothing one of four A1 Singularities). Let KM27 be the cubic
surface with four A−1 -singularities (see table 2 on page 7). Three of its singu-
larities lie in the plane {z = 0}. Using surfex, it is easy to find an ε, s.t. the
surface KM27 + εz2 has the desired topology (see fig. 7):

Go to the surfex web-page [10], start the surfex program, and enter the
equation of KM27. Then add a term +0.1*z^2 and check the permanently

checkbox – this will premanently recompute raytraced images of your surface.
Drag the computer mouse over the green ball to rotate the surface until you
see all singularities. You can scale the image by pressing s on your keyboard
while dragging. Now your surfex screen should look similar to fig. 7 on the
following page. The singularity in the middle has been smoothed in such a way
that the neighborhood of the singularity looks like a hyperboloid of one sheet.
Adding -0.1*z^2 leads to a neighborhood which looks like a hyperboloid of
two sheets. 2

It is a little more subtle to keep singularities of type A−j or A+
j , j > 1, while

deforming others. Forgetting about the sign for a moment, these singularities
have the equation xj+1 + y2 + z2 in a suitable coordinate system. Aj , j > 1,
singularities are characterized by the property that their tangent cone is of
degree two and consists of the union of two different planes.5

4This is also the reason why the geometers of the 19th century called the A1

singularities conical singularities or singularities of type C2. Other names are proper
node, ordinary double point.

5This is the reason why the classical geometers called a singularity of type Aj a
biplanar node Bj+1. A singularity whose tangent cone consists of a single multiple
plane was called a uniplanar node.
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Fig. 7. Smoothing one of the four singularities of the cubic surface KM27.

Let f be a polynomial in three variables x, y, z defining a singularity of
type Aj , j ≥ 2, at the origin. By the finite determinacy theorem (see, e.g., [5]),
we can add an element of the ideal I := m2·Jf to f without changing the type
of the singularity. Here, m denotes the maximal ideal (x, y, z) of the origin and
thus m2 = (x2, xy, xz, y2, yz, z2). Jf := (∂f∂x ,

∂f
∂y ,

∂f
∂z ) is the so-called jacobian

ideal generated by the partial derivatives of f .

Example 6. We take the singularity of type A−3 at the origin, defined by f :=
x4+y2−z2 = 0. Its jacobian ideal is Jf = (x3, y, z). If we choose g1 := xy ∈ m2

and g2 := y ∈ Jf we get g := g1g2 = xy2. Then f +g still defines a singularity
of type A3 at the origin. Furthermore, f + εg is an A−3 singularity for ε small
enough.

We now come to the global situation of a cubic surface f with only isolated
singularities of type Aj , j ≥ 1. The following example describes how to use
the techniques above to deform some of its singularities while keeping others:

Example 7 (Deforming two of three A−2 Singularities to A−1 Singularities). We
start with the surface KM43 which has exactly three singularities of type A−2
(fig. 8(a)). The surface tl + z3 + z2 (fig. 8(b)) has three singularities of type
A−1 at the same coordinates, because the tangent cone is a cone of the form
x2 − y2 + z2 locally at each of these points. One of these singularities has the
coordinates Q := (−2, 0, 0). To get a surface with a singularity of type A−2
at Q and two singularities of type A−1 , we need to adjust the construction
slightly.

Our general remarks from the beginning of this subsection tell us that
we have to look at the jacobian ideal JKM43

at Q. Over the rational numbers,
Singular gives the following primary decomposition: JKM43 = (x, y, z2)∩(x−
1, y2 − 3, z2) ∩ (x+ 2, y, z2). Locally at Q, the relevant primary component is
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(x+2, y, z2). We choose E := x+2 ∈ (x+2, y, z2). As z2 ∈ m2, we then know
that KM43 + z2 · E has a singularity of type A2 at Q.

Locally at the other two singularities (which both have x-coordinate 1), E
takes the value 1 + 2 = 3. Thus, at these singularities, KM43 + z2 ·E behaves
like KM43 + z2 · 3, which has A−1 singularities at these points as already seen
above.

To check that our choices of planes and constants were reasonable and to
understand the construction a little better, we can again use surfex. We type
the equation of KM43 into surfex as f1. Then we add another two equations
using the add eqn button and choose f2 to be x + 2 and f3 to be z. If the

(a) (b) (c)

Fig. 8. Deforming the surface KM43 (image (a)) with three singularities of type A−2
into KM28 (image (c)) with one such singularity and two A−1 singularities.

permanently checkbox is activated we already see the three surfaces in one
picture. When adjusting the colors by clicking at the right of the equations, we
get a result similar to fig. 8. We can hide some of the surfaces by deselecting
the checkbox at the right of the equations. When typing into f1 the changes
described above, we obtain successively the three lower images shown in the
figure. We can produce the black/white images used for the present publica-
tion in the following way: We press the button showing the small disk, select
the dithered checkbox, choose an appropriate resolution, and then click on
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save. A small dialog shows up, where we can give some filename. The high-
resolution image is then computed on the webserver. From there, it can then
be downloaded using the your files button in the surfex window. 2
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H. Pinkham, and B. Teissier, editors, Séminaire sur les singularités des surfaces,
Lecture Notes in Math. 777, pages 21–69. Springer-Verlag, 1980.

5. A. Dimca. Topics on Real and Complex Singularities. Vieweg, 1987.
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